cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262260 Number of triangles formed by the positions of odd numbers in the first n rows of Pascal's triangle, also known as Tartaglia's triangle.

This page as a plain text file.
%I A262260 #110 Jun 11 2021 05:14:42
%S A262260 0,1,1,4,4,6,6,13,13,15,15,21,21,25,25,40,40,42,42,48,48,52,52,66,66,
%T A262260 70,70,82,82,90,90,121,121,123,123,129,129,133,133,147,147,151,151,
%U A262260 163,163,171,171,201,201,205,205,217,217,225,225,253,253,261,261,285,285,301,301,364,364
%N A262260 Number of triangles formed by the positions of odd numbers in the first n rows of Pascal's triangle, also known as Tartaglia's triangle.
%C A262260 Named Tartaglia's triangle after the Italian mathematician Niccolò Fontana Tartaglia (1500-1577). - _Amiram Eldar_, Jun 11 2021
%H A262260 Riccardo Perego and Emmanuele Villa, <a href="/A262260/a262260.pdf">Tartaglia's Triangle Odd Distribution (in Italian), 2012</a>.
%H A262260 Jon E. Schoenfield, <a href="/A262260/a262260.png">Plot of terms through n=2^14</a>.
%H A262260 Emmanuele Villa, <a href="/A262260/a262260.txt">A,B,C,D coefficients for the first 500 rows</a>.
%H A262260 Emmanuele Villa, <a href="https://www.dropbox.com/s/oo60d32f04rfs6u/tartaglia.cs?dl=0">C# Program that calculates the first 50 rows</a>.
%H A262260 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pascal%27s_triangle">Pascal's Triangle</a>.
%F A262260 Empirical formula:
%F A262260 a(0)=0; a(1)=1; for n>1, a(n) = a(n-1) + A + B + C - D
%F A262260 where
%F A262260 A = A001316(n-1) if n = 2x+1, 0 otherwise
%F A262260 B = A001316(n-3) if n = 4x+1, 0 otherwise
%F A262260 C = B-1 if n = 8x+1, 0 otherwise
%F A262260 D = A088512(n+1) = A001316((n+1-m)/8)-1 if n = 8x+1, 0 otherwise, where m is the highest power of 2 less than n.
%e A262260 Taking Pascal's triangle, removing the even terms and replacing each odd term with a dot, will give you this illustration (the circles are connected with lines to show the sub-triangles):
%e A262260                                         triangle counts
%e A262260                                         ---------------
%e A262260    row                                     new total
%e A262260    ===                                     === =====
%e A262260     0                  o                    0    0
%e A262260                       / \
%e A262260     1                o---o                  1    1
%e A262260                     /     \
%e A262260     2              o       o                0    1
%e A262260                   / \     / \
%e A262260     3            o---o---o---o              3    4
%e A262260                 /             \
%e A262260     4          o               o            0    4
%e A262260               / \             / \
%e A262260     5        o---o           o---o          2    6
%e A262260             /     \         /     \
%e A262260     6      o       o       o       o        0    6
%e A262260           / \     / \     / \     / \
%e A262260     7    o---o---o---o---o---o---o---o      7   13
%e A262260         /                             \
%e A262260     8  o                               o    0   13
%e A262260 .
%e A262260 .
%e A262260 Formula example:
%e A262260 given a(46) = 171, a(47) is computed as follows:
%e A262260 A = A001316(46) = 16
%e A262260 B = A001316(44) = 8
%e A262260 C = A001316(44) - 1 = 7
%e A262260 D = A001316((47+1-32)/8) - 1 = 1
%e A262260 a(47) = 171 + 16 + 8 + 7 - 1 = 201
%e A262260 .
%e A262260 .
%e A262260 You can find results for a(n), A, B, C and D in the links section for the first 500 rows.
%Y A262260 Cf. A000120, A001316, A001317, A006943, A088512.
%K A262260 nonn,base
%O A262260 0,4
%A A262260 _Emmanuele Villa_, Nov 09 2016