This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262261 #28 Apr 19 2016 14:04:03 %S A262261 1,4,112,24640,44844800,695273779200,93581069585203200, %T A262261 110803729631663996928000,1165466869384731418887782400000, %U A262261 109720873815210197693149787062272000000,93006053830822450607559730484293052399616000000 %N A262261 a(n) = Product_{k=0..n} binomial(4*k,k). %C A262261 In general, for p > 1, Product_{k=0..n} binomial(p*k,k) ~ A^(1 + 1/(p*(p-1))) * exp(n/2 - 1/12 - 1/(12*p*(p-1))) * n^(-1/3 - n/2 - 1/(12*p*(p-1))) * (p-1)^(1/(12*(p-1)) - p*n/2 - (p-1)*n^2/2) * p^(-1/(12*p) + (p+1)*n/2 + p*n^2/2) * (2*Pi)^(-1/4 - n/2) * Product_{j=1..p-1} (Gamma(j/(p-1))^(j/(p-1)) / Gamma(j/p)^(j/p)), where A = A074962 is the Glaisher-Kinkelin constant. %F A262261 a(n) ~ A^(13/12) * 2^(9*n/2 + 4*n^2) * exp(n/2 - 13/144) * Gamma(1/4)^(1/2) / (Gamma(1/3)^(1/3) * 3^(11/36 + 2*n + 3*n^2/2) * Pi^(7/12 + n/2) * n^(49/144 + n/2)), where A = A074962 is the Glaisher-Kinkelin constant. %t A262261 Table[Product[Binomial[4*k,k],{k,0,n}],{n,0,10}] %Y A262261 Cf. A007685 (p=2), A268196 (p=3). %Y A262261 Cf. A000178, A098694, A268504, A268505, A268506, A271946, A271947. %Y A262261 Cf. A005810, A165975. %K A262261 nonn,easy %O A262261 0,2 %A A262261 _Vaclav Kotesovec_, Apr 17 2016