A262267 Number of (n+2) X (1+2) 0..1 arrays with each row and column divisible by 5, read as a binary number with top and left being the most significant bits.
2, 4, 7, 13, 26, 52, 103, 205, 410, 820, 1639, 3277, 6554, 13108, 26215, 52429, 104858, 209716, 419431, 838861, 1677722, 3355444, 6710887, 13421773, 26843546, 53687092, 107374183, 214748365, 429496730, 858993460, 1717986919, 3435973837
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0....0..0..0....1..0..1....1..0..1....0..0..0....0..0..0....0..0..0 ..1..0..1....0..0..0....0..0..0....1..0..1....0..0..0....0..0..0....1..0..1 ..1..0..1....0..0..0....1..0..1....0..0..0....1..0..1....0..0..0....1..0..1 ..1..0..1....1..0..1....0..0..0....1..0..1....1..0..1....0..0..0....0..0..0 ..1..0..1....0..0..0....0..0..0....1..0..1....1..0..1....0..0..0....0..0..0 ..0..0..0....1..0..1....0..0..0....1..0..1....1..0..1....0..0..0....1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A262274.
Formula
Empirical: a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3) - 2*a(n-4).
Conjectures from Colin Barker, Feb 21 2018: (Start)
G.f.: x*(2 - 2*x + x^2 - 2*x^3) / ((1 - x)*(1 - 2*x)*(1 + x^2)).
a(n) = 1/2 + 2^(2+n)/5 - (1/20-i/20)*((1+2*i)*(-i)^n + (2+i)*i^n) where i=sqrt(-1).
(End)
Comments