A262268 Number of (n+2) X (2+2) 0..1 arrays with each row and column divisible by 5, read as a binary number with top and left being the most significant bits.
4, 16, 49, 169, 676, 2704, 10609, 42025, 168100, 672400, 2686321, 10738729, 42954916, 171819664, 687226225, 2748800041, 10995200164, 43980800656, 175922363761, 703687777321, 2814751109284, 11259004437136, 45036004326769
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..1..1..1....0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..1 ..1..0..1..0....1..1..1..1....1..0..1..0....1..1..1..1....1..0..1..0 ..0..1..0..1....0..1..0..1....1..1..1..1....0..0..0..0....1..1..1..1 ..0..1..0..1....1..1..1..1....0..0..0..0....1..1..1..1....0..1..0..1 ..1..0..1..0....0..1..0..1....0..1..0..1....0..0..0..0....0..0..0..0 ..0..1..0..1....0..0..0..0....1..0..1..0....0..0..0..0....1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A262274.
Formula
Empirical: a(n) = 6*a(n-1) - 12*a(n-2) + 24*a(n-3) - 31*a(n-4) - 6*a(n-5) + 12*a(n-6) - 24*a(n-7) + 32*a(n-8).
Empirical g.f.: x*(4 - 8*x + x^2 - 29*x^3 - 10*x^4 + 20*x^5 + 8*x^6 + 32*x^7) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - 4*x)*(1 + x^2)*(1 + 4*x^2)). - Colin Barker, Dec 31 2018