This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262275 #45 Feb 21 2024 01:11:10 %S A262275 3,11,17,41,67,83,109,127,157,191,211,241,277,283,353,367,401,461,509, %T A262275 547,563,587,617,739,773,797,859,877,967,991,1031,1063,1087,1171,1201, %U A262275 1217,1409,1433,1447,1471,1499,1597,1621,1669,1723,1741,1823,1913,2027,2063,2081,2099,2221,2269,2341,2351 %N A262275 Prime numbers with an even number of steps in their prime index chain. %C A262275 Old (incorrect) name was: Primes not appearing in A121543. %C A262275 Number of terms less than 10^n: 1, 6, 30, 165, 1024, ... . %H A262275 Alois P. Heinz, <a href="/A262275/b262275.txt">Table of n, a(n) for n = 1..10000</a> (first 1025 terms from Zak Seidov and Robert G. Wilson v) %H A262275 Michael P. May, <a href="https://doi.org/10.35834/2020/3202158">Properties of Higher-Order Prime Number Sequences</a>, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and <a href="https://arxiv.org/abs/2108.04662">arXiv version</a>, arXiv:2108.04662 [math.NT], 2021. %H A262275 Michael P. May, <a href="https://arxiv.org/abs/2402.13214">Application of the Inclusion-Exclusion Principle to Prime Number Subsequences</a>, arXiv:2402.13214 [math.GM], 2024. %F A262275 From _Alois P. Heinz_, Mar 15 2020: (Start) %F A262275 { p in primes : A078442(p) mod 2 = 0 }. %F A262275 a(n) = prime(A333242(n)). (End) %e A262275 11 is a term: 11 -> 5 -> 3 -> 2 -> 1, four (an even number of) steps "->" = pi = A000720. %p A262275 b:= proc(n) option remember; %p A262275 `if`(isprime(n), 1+b(numtheory[pi](n)), 0) %p A262275 end: %p A262275 a:= proc(n) option remember; local p; p:= a(n-1); %p A262275 do p:= nextprime(p); %p A262275 if b(p)::even then break fi %p A262275 od; p %p A262275 end: a(1):=3: %p A262275 seq(a(n), n=1..60); # _Alois P. Heinz_, Mar 15 2020 %t A262275 fQ[n_] := If[ !PrimeQ[n] || (PrimeQ[n] && FreeQ[lst, PrimePi[n]]), AppendTo[lst, n]]; k = 2; lst = {1}; While[k < 2401, fQ@ k; k++]; Select[lst, PrimeQ] %o A262275 (PARI) b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k}; %o A262275 apply(prime, select(n->b(n)%2, [1..500])) \\ _Michel Marcus_, Jan 03 2022; after A333242 %Y A262275 Cf. A000040, A000720, A078442, A121543, A333242 (complement in primes). %K A262275 nonn %O A262275 1,1 %A A262275 _Zak Seidov_ and _Robert G. Wilson v_, Sep 17 2015 %E A262275 New name from _Alois P. Heinz_, Mar 15 2020