cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262275 Prime numbers with an even number of steps in their prime index chain.

This page as a plain text file.
%I A262275 #45 Feb 21 2024 01:11:10
%S A262275 3,11,17,41,67,83,109,127,157,191,211,241,277,283,353,367,401,461,509,
%T A262275 547,563,587,617,739,773,797,859,877,967,991,1031,1063,1087,1171,1201,
%U A262275 1217,1409,1433,1447,1471,1499,1597,1621,1669,1723,1741,1823,1913,2027,2063,2081,2099,2221,2269,2341,2351
%N A262275 Prime numbers with an even number of steps in their prime index chain.
%C A262275 Old (incorrect) name was: Primes not appearing in A121543.
%C A262275 Number of terms less than 10^n: 1, 6, 30, 165, 1024, ... .
%H A262275 Alois P. Heinz, <a href="/A262275/b262275.txt">Table of n, a(n) for n = 1..10000</a> (first 1025 terms from Zak Seidov and Robert G. Wilson v)
%H A262275 Michael P. May, <a href="https://doi.org/10.35834/2020/3202158">Properties of Higher-Order Prime Number Sequences</a>, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and <a href="https://arxiv.org/abs/2108.04662">arXiv version</a>, arXiv:2108.04662 [math.NT], 2021.
%H A262275 Michael P. May, <a href="https://arxiv.org/abs/2402.13214">Application of the Inclusion-Exclusion Principle to Prime Number Subsequences</a>, arXiv:2402.13214 [math.GM], 2024.
%F A262275 From _Alois P. Heinz_, Mar 15 2020: (Start)
%F A262275 { p in primes : A078442(p) mod 2 = 0 }.
%F A262275 a(n) = prime(A333242(n)). (End)
%e A262275 11 is a term: 11 -> 5 -> 3 -> 2 -> 1, four (an even number of) steps "->" = pi = A000720.
%p A262275 b:= proc(n) option remember;
%p A262275        `if`(isprime(n), 1+b(numtheory[pi](n)), 0)
%p A262275     end:
%p A262275 a:= proc(n) option remember; local p; p:= a(n-1);
%p A262275       do p:= nextprime(p);
%p A262275          if b(p)::even then break fi
%p A262275       od; p
%p A262275     end: a(1):=3:
%p A262275 seq(a(n), n=1..60);  # _Alois P. Heinz_, Mar 15 2020
%t A262275 fQ[n_] := If[ !PrimeQ[n] || (PrimeQ[n] && FreeQ[lst, PrimePi[n]]), AppendTo[lst, n]]; k = 2; lst = {1}; While[k < 2401, fQ@ k; k++]; Select[lst, PrimeQ]
%o A262275 (PARI) b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k};
%o A262275 apply(prime, select(n->b(n)%2, [1..500])) \\ _Michel Marcus_, Jan 03 2022; after A333242
%Y A262275 Cf. A000040, A000720, A078442, A121543, A333242 (complement in primes).
%K A262275 nonn
%O A262275 1,1
%A A262275 _Zak Seidov_ and _Robert G. Wilson v_, Sep 17 2015
%E A262275 New name from _Alois P. Heinz_, Mar 15 2020