cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262276 Decimal expansion of Toth's constant (the density of the exponentially squarefree numbers).

This page as a plain text file.
%I A262276 #64 May 30 2025 03:32:21
%S A262276 9,5,5,9,2,3,0,1,5,8,6,1,9,0,2,3,7,6,8,8,4,0,6,5,3,8,6,7,0,9,8,7,0,0,
%T A262276 7,4,6,7,7,1,5,9,4,3,1,6,5,4,5,6,8,6,8,8,3,2,8,0,5,8,9,4,9,0,1,8,1,7,
%U A262276 2,8,7,0,1,5,5,2,2,9,2,5,7,1,0,3,5,7,2,0,0,5,5,9,1,1,6,4,4,0,3,5,2,3,0,1,2,9,3,3,4,7,1,7,1,5,8,0,1,2,2,4,3,6,3,9,8,9,3,3,8,8,1,2,0,3,8,6,6,0,1,3,2,8,6,3,2,6,7,5,2,0,6,6,3,5,8,0,2,7,1,7,9,6,0
%N A262276 Decimal expansion of Toth's constant (the density of the exponentially squarefree numbers).
%H A262276 Vladimir Shevelev, <a href="http://arxiv.org/abs/1602.04244">A fast computation of density of exponentially S-numbers</a>, arXiv:1602.04244 [math.NT], 2016.
%H A262276 László Tóth, <a href="https://ac.inf.elte.hu/Vol_027_2007/doi/155_27.pdf">On certain arithmetic functions involving exponential divisors, II.</a>, Annales Univ. Sci. Budapest., Sect. Comp., 27 (2007), 155-166.
%F A262276 Equals Product_{prime p} (1+Sum_{j>=4} (mu(j)^2 - mu(j-1)^2)/p^j), where mu(n) is the Möbius function.
%e A262276 0.95592301586190237688406538670987007467715943165456868832805...
%t A262276 $MaxExtraPrecision = m = 1000; f[x_] := Log[1 - x^4 + (1 - x)*Sum[x^e*(MoebiusMu[e]^2), {e, 4, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 163][[1]] (* _Amiram Eldar_, Apr 27 2025 *)
%Y A262276 Density of A209061.
%Y A262276 Cf. A008683.
%K A262276 nonn,cons
%O A262276 0,1
%A A262276 _Juan Arias-de-Reyna_, Sep 19 2015