A262315 Number of (n+2)X(3+2) 0..1 arrays with each row and column divisible by 7, read as a binary number with top and left being the most significant bits.
5, 9, 17, 133, 361, 1009, 8357, 33993, 127121, 795013, 3876585, 16907121, 90644645, 463649609, 2179845009, 11046180229, 56646588009, 276046895345, 1376462436005, 7003379302345, 34679915634321, 172507268999557, 871215356444137
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..1..1....1..1..1..0..0....0..1..1..1..0....1..1..1..0..0 ..0..0..1..1..1....1..0..1..0..1....1..0..1..0..1....1..0..1..0..1 ..0..0..1..1..1....0..0..1..1..1....1..0..1..0..1....1..0..1..0..1 ..0..0..1..1..1....0..0..1..1..1....1..0..1..0..1....0..0..1..1..1 ..0..0..1..1..1....0..1..1..1..0....0..1..1..1..0....0..1..1..1..0 ..0..0..1..1..1....1..1..1..0..0....0..1..1..1..0....0..1..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A262319.
Formula
Empirical: a(n) = 5*a(n-1) +203*a(n-3) -1015*a(n-4) -17262*a(n-6) +86310*a(n-7) +803306*a(n-9) -4016530*a(n-10) -22920723*a(n-12) +114603615*a(n-13) +424713065*a(n-15) -2123565325*a(n-16) -5289109868*a(n-18) +26445549340*a(n-19) +45727616604*a(n-21) -228638083020*a(n-22) -289788580823*a(n-24) +1448942904115*a(n-25) +1453125527917*a(n-27) -7265627639585*a(n-28) -5836364956590*a(n-30) +29181824782950*a(n-31) +16212555187738*a(n-33) -81062775938690*a(n-34) -21276199455861*a(n-36) +106380997279305*a(n-37) -6355957095425*a(n-39) +31779785477125*a(n-40) +38763541794536*a(n-42) -193817708972680*a(n-43)
Comments