cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262316 Number of (n+2)X(4+2) 0..1 arrays with each row and column divisible by 7, read as a binary number with top and left being the most significant bits.

This page as a plain text file.
%I A262316 #4 Sep 17 2015 22:21:41
%S A262316 10,27,133,1618,6043,42661,683218,4276587,39384421,511294354,
%T A262316 4145349211,40383402661,455304705490,4148740666347,41070560499493,
%U A262316 433051832901778,4157030255637403,41395269270386341,423634866109163218
%N A262316 Number of (n+2)X(4+2) 0..1 arrays with each row and column divisible by 7, read as a binary number with top and left being the most significant bits.
%C A262316 Column 4 of A262319.
%H A262316 R. H. Hardin, <a href="/A262316/b262316.txt">Table of n, a(n) for n = 1..210</a>
%F A262316 Empirical: a(n) = 13*a(n-1) -30*a(n-2) +775*a(n-3) -10075*a(n-4) +23250*a(n-5) -187265*a(n-6) +2434445*a(n-7) -5617950*a(n-8) +18375455*a(n-9) -238880915*a(n-10) +551263650*a(n-11) -585288123*a(n-12) +7608745599*a(n-13) -17558643690*a(n-14) -12851058675*a(n-15) +167063762775*a(n-16) -385531760250*a(n-17) +757921180765*a(n-18) -9852975349945*a(n-19) +22737635422950*a(n-20) -1115961555955*a(n-21) +14507500227415*a(n-22) -33478846678650*a(n-23) -69403913471776*a(n-24) +902250875133088*a(n-25) -2082117404153280*a(n-26) -67517783528000*a(n-27) +877731185864000*a(n-28) -2025533505840000*a(n-29)
%e A262316 Some solutions for n=4
%e A262316 ..0..1..0..1..0..1....1..1..0..0..0..1....1..1..1..1..1..1....1..1..1..0..0..0
%e A262316 ..1..0..1..0..1..0....0..1..0..1..0..1....0..1..1..1..0..0....0..1..0..1..0..1
%e A262316 ..1..0..0..0..1..1....0..0..0..1..1..1....0..0..0..1..1..1....0..0..1..1..1..0
%e A262316 ..1..0..1..0..1..0....0..0..0..1..1..1....0..0..0..0..0..0....0..0..0..1..1..1
%e A262316 ..0..1..0..1..0..1....1..0..0..0..1..1....1..0..0..0..1..1....1..0..1..0..1..0
%e A262316 ..0..1..1..1..0..0....1..1..0..0..0..1....1..1..1..0..0..0....1..1..0..0..0..1
%Y A262316 Cf. A262319.
%K A262316 nonn
%O A262316 1,1
%A A262316 _R. H. Hardin_, Sep 17 2015