This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262321 #15 Feb 16 2019 19:48:21 %S A262321 1,1,3,7,18,43,118,337,1025,3479,13056,48817,199477,898135,4051128, %T A262321 18652459,93872040,492132207,2658676056,14841915049,84757413959, %U A262321 517609038551,3384739112196,21742333893177,141230605251082,1001795869162783,7387581072984938 %N A262321 Number of ways to select a subset s containing n from {1,...,n} and then partition s into blocks of equal size. %C A262321 a(0) = 1 by convention. %H A262321 Alois P. Heinz, <a href="/A262321/b262321.txt">Table of n, a(n) for n = 0..616</a> %F A262321 E.g.f.: A(x) - Integral_{x} A(x) dx, with A(x) = e.g.f. of A262320. %e A262321 a(0) = 1: {}. %e A262321 a(1) = 1: 1. %e A262321 a(2) = 3: 2, 12, 1|2. %e A262321 a(3) = 7: 3, 13, 1|3, 23, 2|3, 123, 1|2|3. %e A262321 a(4) = 18: 4, 14, 1|4, 24, 2|4, 34, 3|4, 124, 1|2|4, 134, 1|3|4, 234, 2|3|4, 1234, 12|34, 13|24, 14|23, 1|2|3|4. %p A262321 b:= proc(n) option remember; n!*`if`(n=0, 1, %p A262321 add(1/(d!*(n/d)!^d), d=numtheory[divisors](n))) %p A262321 end: %p A262321 a:= n-> add(b(k)*binomial(n-1, k-1), k=0..n): %p A262321 seq(a(n), n=0..30); %t A262321 b[n_] := b[n] = n!*If[n == 0, 1, DivisorSum[n, 1/(#!*(n/#)!^#)&]]; %t A262321 a[n_] := Sum[b[k]*Binomial[n-1, k-1], {k, 0, n}]; %t A262321 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Mar 28 2017, translated from Maple *) %Y A262321 First differences of A262320. %K A262321 nonn %O A262321 0,3 %A A262321 _Alois P. Heinz_, Sep 18 2015