cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262323 Lexicographically earliest sequence of distinct terms such that the decimal representations of two consecutive terms overlap.

This page as a plain text file.
%I A262323 #68 Jan 11 2021 02:57:09
%S A262323 1,10,11,12,2,20,22,21,13,3,23,30,33,31,14,4,24,32,25,5,15,41,16,6,26,
%T A262323 42,27,7,17,51,18,8,28,52,29,9,19,61,36,43,34,40,44,45,50,35,53,37,63,
%U A262323 38,73,39,83,48,54,46,60,56,55,57,65,58,75,47,64,49,74
%N A262323 Lexicographically earliest sequence of distinct terms such that the decimal representations of two consecutive terms overlap.
%C A262323 Two terms are said to overlap:
%C A262323 - if the decimal representation of one term is contained in the decimal representation of the other term (for example, 12 and 2 overlap),
%C A262323 - or if, for some k>0, the first k decimal digits (without leading zero) of one term correspond to the k last decimal digits of the other term (for example, 1017 and 1101 overlap).
%C A262323 This sequence is a permutation of the positive integers, with inverse A262255.
%C A262323 The first overlap involving 1 digit occurs between a(1)=1 and a(2)=10.
%C A262323 The first overlap involving 2 digits occurs between a(108)=100 and a(109)=110.
%C A262323 The first overlap involving 3 digits occurs between a(1039)=1017 and a(1040)=1101.
%C A262323 The first overlap involving 4 digits occurs between a(10584)=10212 and a(10585)=11021.
%H A262323 Paul Tek, <a href="/A262323/b262323.txt">Table of n, a(n) for n = 1..10000</a>
%H A262323 Paul Tek, <a href="/A262323/a262323.pl.txt">PERL program for this sequence</a>
%H A262323 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A262323 The first terms of the sequence are:
%e A262323 +----+---------+
%e A262323 | n  | a(n)    |
%e A262323 +----+---------+
%e A262323 |  1 |  1      |
%e A262323 |  2 |  10     |
%e A262323 |  3 | 11      |
%e A262323 |  4 |  12     |
%e A262323 |  5 |   2     |
%e A262323 |  6 |   20    |
%e A262323 |  7 |  22     |
%e A262323 |  8 |   21    |
%e A262323 |  9 |    13   |
%e A262323 | 10 |     3   |
%e A262323 | 11 |    23   |
%e A262323 | 12 |     30  |
%e A262323 | 13 |    33   |
%e A262323 | 14 |     31  |
%e A262323 | 15 |      14 |
%e A262323 | 16 |       4 |
%e A262323 | 17 |      24 |
%e A262323 | 18 |     32  |
%e A262323 | 19 |      25 |
%e A262323 | 20 |       5 |
%e A262323 +----+---------+
%o A262323 (Perl) See Links section.
%o A262323 (Haskell)
%o A262323 import Data.List (inits, tails, intersect, delete)
%o A262323 a262323 n = a262323_list !! (n-1)
%o A262323 a262323_list = 1 : f "1" (map show [2..]) where
%o A262323    f xs zss = g zss where
%o A262323      g (ys:yss) | null (intersect its $ tail $ inits ys) &&
%o A262323                   null (intersect tis $ init $ tails ys) = g yss
%o A262323                 | otherwise = (read ys :: Int) : f ys (delete ys zss)
%o A262323      its = init $ tails xs; tis = tail $ inits xs
%o A262323 -- _Reinhard Zumkeller_, Sep 21 2015
%o A262323 (Python)
%o A262323 def overlaps(a, b):
%o A262323   s, t = sorted([str(a), str(b)], key = lambda x: len(x))
%o A262323   if any(t.startswith(s[i:]) for i in range(len(s))): return True
%o A262323   return any(t.endswith(s[:i]) for i in range(1, len(s)+1))
%o A262323 def aupto(nn):
%o A262323   alst, aset = [1], {1}
%o A262323   for n in range(2, nn+1):
%o A262323     an = 1
%o A262323     while True:
%o A262323       while an in aset: an += 1
%o A262323       if overlaps(an, alst[-1]): alst.append(an); aset.add(an); break
%o A262323       an += 1
%o A262323   return alst
%o A262323 print(aupto(67)) # _Michael S. Branicky_, Jan 10 2021
%Y A262323 Cf. A076654, A262255, A262283.
%Y A262323 Cf. A262367 (fixed points), A262411 (ternary version), A262460 (hexadecimal version).
%K A262323 nonn,look,base,nice
%O A262323 1,2
%A A262323 _Paul Tek_, Sep 19 2015