This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262324 #21 Sep 20 2015 04:09:39 %S A262324 0,0,1,1,1,2,1,3,2,2,1,5,2,3,7,1,2,4,3,3,1,10,1,11,3,4,1,13,7,2,3,5,4, %T A262324 4,1,17,2,9,1,19,4,5,3,7,2,11,23,1,4,6,5,5,1,26,1,27,7,4,1,29,5,6,31, %U A262324 1,16,2,11,3,17,2,5,7,6,6,1,37,2,19,3,13,2,20,1,41,6,7,1,43,11,4,5,9,23,2,47,1,6,8,7,7 %N A262324 Conway's triangle of "happy factorizations" (flattened). %C A262324 Conway's triangle is listed by increasing couple products, with duplicate squares removed. %H A262324 J. H. Conway, <a href="http://www.cs.uwaterloo.ca/journals/JIS/happy.html">On Happy Factorizations</a>, J. Integer Sequences, Vol. 1, 1998, #1. %e A262324 Triangle begins: %e A262324 {0,0}, %e A262324 {1,1}, %e A262324 {1,2}, {1,3}, {2,2}, %e A262324 {1,5}, {2,3}, {7,1}, {2,4}, {3,3}, %e A262324 {1,10}, {1,11}, {3,4}, {1,13}, {7,2}, {3,5}, {4,4}, %e A262324 {1,17}, {2,9}, {1,19}, {4,5}, {3,7}, {2,11}, {23,1}, {4,6}, {5,5}, %e A262324 ... %e A262324 The original triangle (adapted and truncated): %e A262324 ... %e A262324 5^2 ... %e A262324 4^2 1*26 ... %e A262324 3^2 1*17 1*27 ... %e A262324 2^2 1*10 2*9 7*4 ... %e A262324 1^2 1*5 1*11 1*19 1*29 ... %e A262324 0^2 1*2 2*3 3*4 4*5 5*6 ... %e A262324 1^2 1*3 7*1 1*13 3*7 31*1 ... %e A262324 2^2 2*4 7*2 2*11 16*2 ... %e A262324 3^2 3*5 23*1 11*3 ... %e A262324 4^2 4*6 17*2 ... %e A262324 5^2 5*7 ... %e A262324 6^2 ... %e A262324 ... %t A262324 f[0] = {0, 0}; f[32] = {16, 2}(* to speed up *); f[n_] := Do[c = n/b; If[b == c, Return[{b, b}]]; r1 = Reduce[r >= 0 && s >= 0 && c > 1 && b*r^2 + 1 == c*s^2, {r, s}, Integers]; If[r1 =!= False, Return[{b, c}]]; r2 = Reduce[r >= 0 && s >= 0 && r == 2x + 1 && s == 2y + 1 && b*r^2 + 2 == c *s^2, {r, s, x, y}, Integers]; If[r2 =!= False, Return[{b, c}]], {b, Divisors[n]}]; Table[Print["f(", n, ") = ", fn = f[n]]; fn, {n, 0, 49}] // Flatten %Y A262324 Cf. A007966, A007969, A007970, A191854, A191855, A191856. %K A262324 tabf,nonn %O A262324 0,6 %A A262324 _Jean-François Alcover_, Sep 18 2015