cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262327 Number of (n+1) X (3+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

6, 15, 90, 351, 2106, 10935, 65610, 378351, 2270106, 13482855, 80897130, 484142751, 2904856506, 17417978775, 104507872650, 626946793551, 3761680761306, 22569180586695, 135415083520170, 812482365290751, 4874894191744506
Offset: 1

Views

Author

R. H. Hardin, Sep 18 2015

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0....0..1..1..0....1..0..0..1....0..0..1..1....1..1..1..1
..0..0..0..0....0..1..1..0....1..1..1..1....0..0..1..1....0..0..0..0
..0..0..0..0....0..0..0..0....0..1..1..0....1..0..0..1....1..1..0..0
..1..0..0..1....1..0..0..1....1..0..0..1....1..1..1..1....0..0..1..1
..1..0..0..1....1..0..0..1....1..0..0..1....0..1..1..0....1..1..0..0
		

Crossrefs

Column 3 of A262332.

Formula

Empirical: a(n) = 6*a(n-1) + 9*a(n-2) - 54*a(n-3).
Conjectures from Colin Barker, Dec 31 2018: (Start)
G.f.: 3*x*(2 - 7*x - 18*x^2) / ((1 - 3*x)*(1 + 3*x)*(1 - 6*x)).
a(n) = 3^(n-2)*(14 + 2^(2+n)) / 2 for n even.
a(n) = 3^(n-2)*(28 + 2^(2+n)) / 2 for n odd.
(End)