A262327 Number of (n+1) X (3+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits.
6, 15, 90, 351, 2106, 10935, 65610, 378351, 2270106, 13482855, 80897130, 484142751, 2904856506, 17417978775, 104507872650, 626946793551, 3761680761306, 22569180586695, 135415083520170, 812482365290751, 4874894191744506
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0..0....0..1..1..0....1..0..0..1....0..0..1..1....1..1..1..1 ..0..0..0..0....0..1..1..0....1..1..1..1....0..0..1..1....0..0..0..0 ..0..0..0..0....0..0..0..0....0..1..1..0....1..0..0..1....1..1..0..0 ..1..0..0..1....1..0..0..1....1..0..0..1....1..1..1..1....0..0..1..1 ..1..0..0..1....1..0..0..1....1..0..0..1....0..1..1..0....1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A262332.
Formula
Empirical: a(n) = 6*a(n-1) + 9*a(n-2) - 54*a(n-3).
Conjectures from Colin Barker, Dec 31 2018: (Start)
G.f.: 3*x*(2 - 7*x - 18*x^2) / ((1 - 3*x)*(1 + 3*x)*(1 - 6*x)).
a(n) = 3^(n-2)*(14 + 2^(2+n)) / 2 for n even.
a(n) = 3^(n-2)*(28 + 2^(2+n)) / 2 for n odd.
(End)