A262332 T(n,k) = Number of (n+1) X (k+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits.
2, 3, 3, 6, 5, 6, 11, 15, 15, 11, 22, 33, 90, 33, 22, 43, 99, 351, 351, 99, 43, 86, 261, 2106, 2399, 2106, 261, 86, 171, 783, 10935, 26131, 26131, 10935, 783, 171, 342, 2241, 65610, 252097, 570922, 252097, 65610, 2241, 342, 683, 6723, 378351, 2767631, 10789339
Offset: 1
Examples
Some solutions for n=4, k=4 ..0..0..0..0..0....0..1..1..1..1....1..1..0..1..1....0..0..0..1..1 ..1..1..1..1..0....1..1..0..0..0....1..0..1..0..1....1..1..0..1..1 ..1..1..1..1..0....1..1..1..1..0....1..0..0..1..0....1..0..0..1..0 ..1..1..0..0..0....0..1..0..0..1....1..1..0..0..0....0..0..0..1..1 ..1..1..0..0..0....0..0..1..1..0....0..0..1..1..0....0..1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..312
Crossrefs
Column 1 is A005578(n+1).
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +3*a(n-2) -9*a(n-3)
k=3: a(n) = 6*a(n-1) +9*a(n-2) -54*a(n-3)
k=4: [order 7]
k=5: [order 11]
k=6: [order 15]
k=7: [order 19]
Comments