This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262339 #17 Nov 07 2020 11:42:46 %S A262339 2,3,5,7,23,691 %N A262339 Exceptional primes for Ramanujan's tau function. %C A262339 For each exceptional prime p, Ramanujan's tau function tau(n) = A000594(n) satisfies a simple congruence modulo p. %C A262339 The main entry for this subject is A000594. %C A262339 Terms 23 and 691 also appear in A193855. - _Jud McCranie_, Nov 05 2020 %D A262339 H. P. F. Swinnerton-Dyer, Congruence properties of tau(n), pp. 289-311 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988. %H A262339 H. P. F. Swinnerton-Dyer, <a href="http://dx.doi.org/10.1007/978-3-540-37802-0_1">On l-adic representations and congruences for coefficients of modular forms</a>, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973. %H A262339 Wikipedia, <a href="https://en.wikipedia.org/wiki/Ramanujan_tau_function">Ramanujan tau function</a> %e A262339 691 is an exceptional prime because tau(n) == sum of 11th power of divisors of n mod 691 (see A046694). %Y A262339 Cf. A000594, A046694, A193855. %K A262339 nonn,fini,full %O A262339 1,1 %A A262339 _Jonathan Sondow_, Sep 18 2015