A262340 Primes of the form p^2 + b^4 where p is a prime.
5, 41, 137, 281, 617, 857, 977, 1097, 1217, 1321, 1657, 1697, 2137, 4217, 4457, 4937, 5297, 6257, 6337, 7537, 7577, 7817, 7937, 9137, 10009, 10169, 10289, 10337, 10457, 10529, 11369, 11497, 11681, 11897, 12809, 13177, 13721, 14489, 15329, 16889, 17417
Offset: 1
Keywords
Examples
5 = 2^2 + 1^4, so a(1) = 5.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Art of Problem Solving, Fermat's Two Squares Theorem
- MathWorld, Fermat's 4n+1 Theorem
Programs
-
Mathematica
nn = 14; Union[ Flatten[ Table[ Select[ Prime[n]^2 + Range[nn]^4, PrimeQ[#] && # < nn^4 &], {n,PrimePi[nn^2]}]]]
-
PARI
list(lim)=my(v=List(),p2,t); forprime(p=2,sqrtint(lim\=1), p2=p^2; forstep(x=1+p%2,sqrtnint(lim-p2,4),2, if(isprime(t=p2+x^4), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Aug 21 2017
Comments