This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262347 #51 May 30 2020 09:21:04 %S A262347 1,1,1,3,2,1,4,10,25,4,24,7,25,6,1,4,14,43,97,220,2,18,62,232,2,33,2, %T A262347 12,36,106,1,11,2,4,14,40,2,4,86,307,20,1,4,14,41,99,266,674,1505, %U A262347 3510,7726,14,50,156,2,8,26,56,2,4,6,14,48,2,4,8,16,28,108,319,1046,4,26,82,1,2 %N A262347 Number of subsets of [1..n] of maximal size that are free of 3-term arithmetic progressions. %C A262347 The sequence A003002 gives the size of the largest subset of the integers up to n that avoids three-term arithmetic progressions. This sequence gives the number of distinct subsets of [1..n] that have that size and are free of three-term arithmetic progressions. %H A262347 Fausto A. C. Cariboni, <a href="/A262347/b262347.txt">Table of n, a(n) for n = 0..140</a> %H A262347 Fausto A. C. Cariboni, <a href="/A262347/a262347.txt">All sets that yield a(n) for n = 4..130.</a>, Feb 19 2018. %H A262347 Janusz Dybizbanski, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i2p15">Sequences containing no 3-term arithmetic progressions</a>, The Electronic Journal of Combinatorics, 19, no. 2 (2012). %H A262347 <a href="http://oeis.org/wiki/Index_to_OEIS:_Section_No#non_averaging">Index entries related to non-averaging sequences</a> %e A262347 The largest subset of [1,6] that doesn't have any 3 terms in arithmetic progression has size 4. There are 4 such subsets with this property: {1,2,4,5}, {1,2,5,6}, {1,3,4,6} and {2,3,5,6}, so a(6)=4. %p A262347 G:= proc(n, cons, t) %p A262347 option remember; %p A262347 local consn, consr; %p A262347 if n < t or member({},cons) then return {} fi; %p A262347 if t = 0 then return {{}} fi; %p A262347 consn, consr:= selectremove(has,cons,n); %p A262347 consn:= subs(n=NULL,consn); %p A262347 procname(n-1,consr,t) union %p A262347 map(`union`,procname(n-1,consr union consn,t-1),{n}); %p A262347 end proc: %p A262347 F:= proc(n) %p A262347 local m,cons,R; %p A262347 m:= A003002(n-1); %p A262347 cons:= {seq(seq({i,i+j,i+2*j},i=1..n-2*j),j=1..(n-1)/2)}; %p A262347 R:= G(n,cons,m+1); %p A262347 if R = {} then %p A262347 A003002(n):= m; %p A262347 G(n,cons,m); %p A262347 else %p A262347 A003002(n):= m+1; %p A262347 R %p A262347 fi %p A262347 end proc: %p A262347 A003002(1):= 1: %p A262347 a[1]:= 1: %p A262347 for n from 2 to 40 do %p A262347 a[n]:= nops(F(n)) %p A262347 od: %p A262347 seq(a[i],i=1..40); # _Robert Israel_, Sep 20 2015 %t A262347 A003002 = Cases[Import["https://oeis.org/A003002/b003002.txt", "Table"], {_, _}][[All, 2]]; %t A262347 a[n_] := a[n] = Count[Subsets[Range[n], {A003002[[n+1]]}], s_ /; !MatchQ[s, {___, n1_, ___, n2_, ___, n3_, ___} /; n2 - n1 == n3 - n2]]; %t A262347 Table[Print[n, " ", a[n]]; a[n], {n, 0, 25}] (* _Jean-François Alcover_, May 30 2020 *) %Y A262347 Cf. A003002, A065825. %Y A262347 Last elements of rows of A334187. %K A262347 nonn %O A262347 0,4 %A A262347 _Nathan McNew_, Sep 18 2015 %E A262347 a(25) to a(44) from _Robert Israel_, Sep 20 2015 %E A262347 a(45) to a(75) from _Fausto A. C. Cariboni_, Jan 15 2018 %E A262347 a(0)=1 prepended by _Alois P. Heinz_, May 16 2020