This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262349 #31 Feb 16 2025 08:33:27 %S A262349 1,1,3,6,24,98,240,878,13104,34560,143840,1628640,4421376,27644438, %T A262349 291751956,1666163520,10523628456,216625138884,779556556800, %U A262349 5873176163328,107021765366544,633207380826720,6399554302310400,66975753492138600,594616643557427040 %N A262349 Sum of the divisors of the n-th Bell number. %H A262349 Amiram Eldar, <a href="/A262349/b262349.txt">Table of n, a(n) for n = 0..104</a> %H A262349 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellNumber.html">Bell Number</a> %H A262349 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DivisorFunction.html">Divisor Function</a> %F A262349 a(n) = sigma_1(A000110(n)) = A000203(A000110(n)). %F A262349 a(n) = sigma_1(1/e*Sum_{k >=0} k^n/(k!)). %t A262349 Table[DivisorSigma[1, BellB[n]], {n, 0, 22}] %o A262349 (Magma) [DivisorSigma(1, Bell(n)): n in [0..30]]; // _Vincenzo Librandi_, Sep 19 2015 %o A262349 (PARI) a000110(n) = n! * polcoeff( exp( exp( x + x * O(x^n)) - 1), n); %o A262349 vector(30, n, sigma(a000110(n-1))) \\ _Altug Alkan_, Sep 26 2015 %o A262349 (PARI) a000110(n) = round(exp(-1)*suminf(k=0, 1.0*k^n/k!)); %o A262349 vector(30, n, sigma(a000110(n-1))) \\ _Altug Alkan_, Oct 04 2015 %Y A262349 Cf. A000110, A000203. %K A262349 nonn %O A262349 0,3 %A A262349 _Ilya Gutkovskiy_, Sep 18 2015 %E A262349 More terms from _Vincenzo Librandi_, Sep 19 2015