This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262350 #28 Dec 13 2017 04:19:12 %S A262350 2,3,5,7,13,11,29,53,43,23,31,61,59,109,181,107,173,367,223,191,127, %T A262350 509,1013,4013,3931,3767,13757,11131,2939,1783,3037,1979,3821,3547, %U A262350 1499,1901,877,2927,1759,1471,1789,1531,2029,2011,7901,60887,56239,93887,28351 %N A262350 a(1) = 2. For n>1, let s denote the binary string of a(n-1) with the leftmost 1 and following consecutive 0's removed. Then a(n) is the smallest prime not yet present whose binary representation begins with s. %C A262350 This sequence is infinite. The number of primes that are not in this sequence is conjectured to be infinite. %C A262350 Proof of first statement, following a comment from _David W. Wilson_: It follows from standard results about primes in short intervals (see for example Harman, 1982) that there are infinitely many numbers in any base b starting with any nonzero prefix c. So there are infinitely many primes whose binary expansion begins with s, and so a(n) always exists. - _N. J. A. Sloane_, Sep 19 2015 %H A262350 Alois P. Heinz, <a href="/A262350/b262350.txt">Table of n, a(n) for n = 1..589</a> %H A262350 G. Harman, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002426536">Primes in short intervals</a>, Math. Zeit., 180 (1982), 335-348. %e A262350 : 10 ... 2 %e A262350 : 11 ... 3 %e A262350 : 101 ... 5 %e A262350 : 111 ... 7 %e A262350 : 1101 ... 13 %e A262350 : 1011 ... 11 %e A262350 : 11101 ... 29 %e A262350 : 110101 ... 53 %e A262350 : 101011 ... 43 %e A262350 : 10111 ... 23 %e A262350 : 11111 ... 31 %e A262350 : 111101 ... 61 %e A262350 : 111011 ... 59 %e A262350 : 1101101 ... 109 %e A262350 : 10110101 ... 181 %e A262350 : 1101011 ... 107 %e A262350 : 10101101 ... 173 %p A262350 b:= proc() true end: %p A262350 a:= proc(n) option remember; local h, k, ok, p, t; %p A262350 if n=1 then p:=2 %p A262350 else h:= (k-> irem(k, 2^(ilog2(k))))(a(n-1)); p:= h; %p A262350 ok:= isprime(p) and b(p); %p A262350 for t while not ok do %p A262350 for k to 2^t-1 while not ok do p:= h*2^t+k; %p A262350 ok:= isprime(p) and b(p) %p A262350 od %p A262350 od %p A262350 fi; b(p):= false; p %p A262350 end: %p A262350 seq(a(n), n=1..70); %Y A262350 Binary analog of A262283. %Y A262350 Primes whose binary expansion begins with binary expansion of 1, 2, 3, 4, 5, 6, 7: A000040, A080165, A080166, A262286, A262284, A262287, A262285. %Y A262350 Cf. A262365. %K A262350 nonn,base %O A262350 1,1 %A A262350 _Alois P. Heinz_, Sep 18 2015