This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262354 #20 Mar 14 2020 10:32:08 %S A262354 6,48,240,672,2640,4368,9792,13680,24288,48720,59520,101232,137760, %T A262354 158928,207552,297648,410640,453840,601392,715680,777888,985920, %U A262354 1143408,1409760,1825152,2060400,2185248,2449872,2589840,2885568,4096512,4495920,5142432,5370960 %N A262354 a(n) is the number of 2 X 2 matrices over Z_p with determinant in {1,-1} where p = prime(n). %C A262354 a(n) divides A244509(n). %C A262354 For n>2 (i.e. p=prime(n)>=5), a(n) gives the order of the largest proper subgroup of GL(2,Z_p). %H A262354 Gregor Olsavsky, <a href="http://www.jstor.org/stable/2690952">Groups formed from 2 X 2 matrices over Z_p</a>, Mathematics Magazine, Vol. 63, No. 4 (Oct., 1990), pp. 269-272. %F A262354 For n>1, a(n) = 2*p*(p^2-1) where p = prime(n). %F A262354 For n>1, a(n) = 2*A127917(n). %t A262354 Prepend[2 Table[(Prime@ n + 1) Prime@ n (Prime@ n - 1), {n, 2, 34}], 6] (* _Michael De Vlieger_, Mar 24 2016, after _Artur Jasinski_ at A127917 *) %o A262354 (Sage) [6] + [2*p*(p^2-1) for p in prime_range(3,150)] %o A262354 (PARI) lista(nn) = {print1(6, ", "); forprime(p=3, nn, print1(2*p*(p^2-1), ", ")); } \\ _Altug Alkan_, Mar 24 2016 %Y A262354 Cf. A244509, A127917, A117762, A270775. %K A262354 nonn %O A262354 1,1 %A A262354 _Tom Edgar_, Mar 24 2016