cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262357 Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with w^2*x^2 + 5*x^2*y^2 + 80*y^2*z^2 + 20*z^2*w^2 a square, where w is a positive integer and x,y,z are nonnegative integers.

This page as a plain text file.
%I A262357 #31 Mar 11 2023 07:12:45
%S A262357 1,2,1,1,4,3,2,2,4,5,1,1,6,3,2,1,6,7,2,4,8,6,2,3,8,9,3,2,8,5,2,2,6,6,
%T A262357 2,4,9,5,4,5,8,5,1,1,10,5,3,1,5,9,3,6,10,10,6,3,5,5,2,2,12,3,5,1,13,9,
%U A262357 3,6,10,9
%N A262357 Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with w^2*x^2 + 5*x^2*y^2 + 80*y^2*z^2 + 20*z^2*w^2 a square, where w is a positive integer and x,y,z are nonnegative integers.
%C A262357 Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4^k*m (k = 0,1,2,... and m = 1, 3, 11, 43, 547, 763, 1739, 6783).
%C A262357 (ii) For each quadruples (a,b,c,d) = (1,3,78,27), (1,3,222,75), (4,12,81,108), (6,27,25,75), (7,21,112,32), any positive integer can be written as w^2 + x^2 + y^2 + z^2 with a*w^2*x^2 + b*x^2*y^2 + c*y^2*z^2 + d*z^2*w^2 a square, where w is a positive integer and x,y,z are integers.
%C A262357 (iii) Each n = 0,1,2,.... can be written as w^2 + x^2 + y^2 + z^2 with w,x,y,z integers such that w^2*x^2 + 4*x^2*y^2 + 44*y^2*z^2 + 16*z^2*w^2 = 5*t^2 for some integer t.
%C A262357 See also A268507, A269400, A271510, A271513, A271518, A271665, A271714, A271721, A271724, A271775, A271778 and A271824 for other conjectures refining Lagrange's four-square theorem.
%H A262357 Zhi-Wei Sun, <a href="/A262357/b262357.txt">Table of n, a(n) for n = 1..10000</a>
%H A262357 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1604.06723">Refining Lagrange's four-square theorem</a>, arxiv:1604.06723, 2016.
%e A262357 a(1) = 1 since 1 = 1^2 + 0^2 + 0^2 + 0^2 with 1 > 0 and 1^2*0^2 + 5*0^2*0^2 + 80*0^2*0^2 + 20*0^2*1^2 = 0^2.
%e A262357 a(2) = 2 since 2 = 1^2 + 0^2 + 1^2 + 0^2 with 1 > 0 and 1^2*0^2 + 5*0^2*1^2 + 80*1^2*0^2 + 20*0^2*1^2 = 0^2, and also 2 = 1^2 + 1^2 + 0^2 + 0^2 with 1 > 0 and 1^2*1^2 + 5*1^2*0^2 + 80*0^2*0^2 + 20*0^2*1^2 = 1^2.
%e A262357 a(3) = 1 since 3 = 1^2 + 0^2 + 1^2 + 1^2 with 1 > 0 and 1^2*0^2 + 5*0^2*1^2 + 80*1^2*1^2 + 20*1^2*1^2 = 10^2.
%e A262357 a(11) = 1 since 11 = 1^2 + 0^2 + 1^2 + 3^2 with 1 > 0 and
%e A262357 1^2*0^2 + 5*0^2*1^2 + 80*1^2*3^2 + 20*3^2*1^2 = 30^2.
%e A262357 a(43) = 1 since 43 = 3^2 + 0^2 + 3^2 + 5^2 with 3 > 0 and 3*0^2 + 5*0^2*3^2 + 80*3^2*5^2 + 20*5^2*3^2 = 150^2.
%e A262357 a(547) = 1 since 547 = 3^2 + 0^2 + 3^2 + 23^2 with 3 > 0 and 3^2*0^2 + 5*0^2*3^2 + 80*3^2*23^2 + 20*23^2*3^2 = 690^2.
%e A262357 a(763) = 1 since 763 = 13^2 + 20^2 + 13^2 + 5^2 with 13 > 0 and 13^2*20^2 + 5*20^2*13^2 + 80*13^2*5^2 + 20*5^2*13^2 = 910^2.
%e A262357 a(1739) = 1 since 1739 = 15^2 + 16^2 + 27^2 + 23^2 with 15 > 0 and 15^2*16^2 + 5*16^2*27^2 + 80*27^2*23^2 + 20*23^2*15^2 = 5850^2.
%e A262357 a(6783) = 1 since 6783 = 17^2 + 73^2 + 18^2 + 29^2 with 17 > 0 and 17^2*73^2 + 5*73^2*18^2 + 80*18^2*29^2 + 20*29^2*17^2 = 6069^2.
%t A262357 SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
%t A262357 Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(n-x^2-y^2-z^2)*x^2+5*x^2*y^2+80*y^2*z^2+20*z^2*(n-x^2-y^2-z^2)],r=r+1],{x,0,Sqrt[n-1]},{y,0,Sqrt[n-1-x^2]},{z,0,Sqrt[n-1-x^2-y^2]}];Print[n," ",r];Continue,{n,1,70}]
%Y A262357 Cf. A000118, A000290, A268507, A269400, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824.
%K A262357 nonn
%O A262357 1,2
%A A262357 _Zhi-Wei Sun_, Apr 17 2016