cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262396 Product of the sums and differences of the square roots of the first n positive integers, combined in all possible ways.

This page as a plain text file.
%I A262396 #19 Jun 18 2022 12:11:45
%S A262396 1,-1,1,64,4096,23323703841,63703464216016403230349121,
%T A262396 316699666163357097153212433469030615484754548657341071360000
%N A262396 Product of the sums and differences of the square roots of the first n positive integers, combined in all possible ways.
%C A262396 The series increases rapidly and the next number in the sequence has 135 decimal digits. Each element for n>1 is necessarily both an integer and a perfect square, the square roots being 1, 8, 64, 152721, 7981444995489, 562760753929551396141111705600, ...
%H A262396 Alois P. Heinz, <a href="/A262396/b262396.txt">Table of n, a(n) for n = 0..10</a>
%e A262396 a(0) = 1 = (empty product).
%e A262396 a(1) = -1 = (sqrt(1)) * (-sqrt(1)).
%e A262396 a(2) = 1 = (1+sqrt(2)) * (1-sqrt(2)) * (-1+sqrt(2)) * (-1-sqrt(2)).
%e A262396 a(3) = 64 = (1+sqrt(2)+sqrt(3)) * (1+sqrt(2)-sqrt(3)) * (1-sqrt(2)+sqrt(3)) * (1-sqrt(2)-sqrt(3)) * (-1+sqrt(2)+sqrt(3)) * (-1+sqrt(2)-sqrt(3)) * (-1-sqrt(2)+sqrt(3)) * (-1-sqrt(2)-sqrt(3)).
%p A262396 s:= proc(n) option remember; `if`(n<2, [1, -1][1..2*n],
%p A262396        map(x-> [x+sqrt(n), x-sqrt(n)][], s(n-1)))
%p A262396     end:
%p A262396 a:= n-> expand(mul(t, t=s(n))):
%p A262396 seq(a(n), n=0..7);  # _Alois P. Heinz_, Sep 21 2015
%t A262396 s[n_] := s[n] = If[n < 2, {1, -1}[[1 ;; 2n]], {# + Sqrt[n], # - Sqrt[n]}& /@ s[n - 1]];
%t A262396 a[n_] := If[n == 0, 1, Times @@ Flatten[s[n], n - 1] // Expand];
%t A262396 a /@ Range[0, 7] (* _Jean-François Alcover_, Nov 24 2020, after _Alois P. Heinz_ *)
%Y A262396 Cf. A354913.
%K A262396 sign
%O A262396 0,4
%A A262396 _Mark Bradley_, Sep 21 2015