A262403 Number of ways to write pi(T(n)) = pi(T(k)) + pi(T(m)) with 1 < k < m < n, where T(x) is the triangular number x*(x+1)/2, and pi(x) is the number of primes not exceeding x.
0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 2, 1, 3, 4, 4, 4, 3, 3, 3, 3, 5, 4, 3, 4, 6, 4, 5, 2, 3, 6, 4, 1, 5, 8, 3, 2, 6, 1, 4, 5, 4, 2, 7, 2, 4, 5, 5, 5, 3, 4, 9, 9, 4, 5, 4, 8, 7, 6, 9, 4, 7, 5, 6, 2, 5, 9, 3, 8, 5, 6, 8, 5, 4, 3, 8, 4, 8, 7, 8, 5, 7, 8, 7, 4, 6, 2, 7, 7, 8, 7, 4, 5, 6, 4, 6, 4, 6, 4, 6, 6
Offset: 1
Keywords
Examples
a(5) = 1 since pi(T(5)) = pi(15) = 6 = 2 + 4 = pi(3) + pi(10) = pi(T(2)) + pi(T(4)). a(6) = 1 since pi(T(6)) = pi(21) = 8 = 2 + 6 = pi(3) + pi(15) = pi(T(2)) + pi(T(5)). a(7) = 1 since pi(T(7)) = pi(28) = 9 = 3 + 6 = pi(6) + pi(15) = pi(T(3)) + pi(T(5)). a(10) = 1 since pi(T(10)) = pi(55) = 16 = 2 + 14 = pi(3) + pi(45) = pi(T(2)) + pi(T(9)). a(12) = 1 since pi(T(12)) = pi(78) = 21 = 3 + 18 = pi(6) + pi(66) = pi(T(3)) + pi(T(11)). a(32) = 1 since pi(T(32)) = pi(528) = 99 = 9 + 90 = pi(28) + pi(465) = pi(T(7)) + pi(T(30)). a(38) = 1 since pi(T(38)) = pi(741) = 131 = 32 + 99 = pi(136) + pi(528) = pi(T(16)) + pi(T(32)). a(445) = 1 since pi(T(445)) = pi(99235) = 9526 = 2963 + 6563 = pi(27028) + pi(65703) = pi(T(232)) + pi(T(362)). a(727) = 1 since pi(T(727)) = pi(264628) = 23197 = 10031 + 13166 = pi(105111) + pi(141778) = pi(T(458)) + pi(T(532)).
References
- R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. (Cf. Section C6 on addition chains.)
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
f[n_]:=PrimePi[n(n+1)/2] T[m_,n_]:=Table[f[k],{k,m,n}] Do[r=0;Do[If[MemberQ[T[k+1,n-1],f[n]-f[k]],r=r+1];Continue,{k,2,n-2}];Print[n," ",r];Continue,{n,1,100}]
Comments