cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262403 Number of ways to write pi(T(n)) = pi(T(k)) + pi(T(m)) with 1 < k < m < n, where T(x) is the triangular number x*(x+1)/2, and pi(x) is the number of primes not exceeding x.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 2, 1, 3, 4, 4, 4, 3, 3, 3, 3, 5, 4, 3, 4, 6, 4, 5, 2, 3, 6, 4, 1, 5, 8, 3, 2, 6, 1, 4, 5, 4, 2, 7, 2, 4, 5, 5, 5, 3, 4, 9, 9, 4, 5, 4, 8, 7, 6, 9, 4, 7, 5, 6, 2, 5, 9, 3, 8, 5, 6, 8, 5, 4, 3, 8, 4, 8, 7, 8, 5, 7, 8, 7, 4, 6, 2, 7, 7, 8, 7, 4, 5, 6, 4, 6, 4, 6, 4, 6, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 21 2015

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 4, and a(n) = 1 only for n = 5, 6, 7, 10, 12, 32, 38, 445, 727.
(ii) All those numbers pi(T(n)) (n = 1,2,3,...) are pairwise distinct. Moreover, if sum_{i=j,...,k}1/pi(T(i)) and sum_{r=s,...,t}1/pi(T(r)) with 1 < j <= k and j <= s <= t have the same fractional part but the ordered pairs (j,k) and (s,t) are different, then j = 2, k = 5 and s = t = 4.
Clearly, part (i) is related to addition chains, and the first assertion in part (ii) is an analog of Legendre's conjecture that pi(n^2) < pi((n+1)^2) for all n = 1,2,3,....
See also A262408 and A262409 for related conjectures involving powers.

Examples

			a(5) = 1 since pi(T(5)) = pi(15) = 6 = 2 + 4 = pi(3) + pi(10) = pi(T(2)) + pi(T(4)).
a(6) = 1 since pi(T(6)) = pi(21) = 8 = 2 + 6 = pi(3) + pi(15) = pi(T(2)) + pi(T(5)).
a(7) = 1 since pi(T(7)) = pi(28) = 9 = 3 + 6 = pi(6) + pi(15) = pi(T(3)) + pi(T(5)).
a(10) = 1 since pi(T(10)) = pi(55) = 16 = 2 + 14 = pi(3) + pi(45) = pi(T(2)) + pi(T(9)).
a(12) = 1 since pi(T(12)) = pi(78) = 21 = 3 + 18 = pi(6) + pi(66) = pi(T(3)) + pi(T(11)).
a(32) = 1 since pi(T(32)) = pi(528) = 99 = 9 + 90 = pi(28) + pi(465) = pi(T(7)) + pi(T(30)).
a(38) = 1 since pi(T(38)) = pi(741) = 131 = 32 + 99 = pi(136) + pi(528) = pi(T(16)) + pi(T(32)).
a(445) = 1 since pi(T(445)) = pi(99235) = 9526 = 2963 + 6563 = pi(27028) + pi(65703) = pi(T(232)) + pi(T(362)).
a(727) = 1 since pi(T(727)) = pi(264628) = 23197 = 10031 + 13166 = pi(105111) + pi(141778) = pi(T(458)) + pi(T(532)).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. (Cf. Section C6 on addition chains.)
  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=PrimePi[n(n+1)/2]
    T[m_,n_]:=Table[f[k],{k,m,n}]
    Do[r=0;Do[If[MemberQ[T[k+1,n-1],f[n]-f[k]],r=r+1];Continue,{k,2,n-2}];Print[n," ",r];Continue,{n,1,100}]