A262409 Positive integers m such that pi(m^3) = pi(j^3) + pi(k^3) for some 0 < j <= k < m.
4, 89, 97, 101, 110, 196, 237, 372, 410, 1457, 2522, 3327, 4244, 4437, 5684, 5777, 7647, 8827, 9608, 9680, 9807, 10744, 17563, 19146, 21208, 23188, 27153, 28286, 34086, 35443, 40057, 49338, 49613, 54425, 55360, 56906, 61304, 69147, 69515, 73694, 84508, 95674
Offset: 1
Keywords
Examples
a(1) = 4 since pi(4^3) = pi(64) = 18 = 9 + 9 = pi(27) + pi(27) = pi(3^3) + pi(3^3). a(2) = 89 since pi(89^3) = 56924 = 14479 + 42445 = pi(157464) + pi(512000) = pi(54^3) + pi(80^3). a(22) = 10744 since pi(10744^3) = pi(1240217910784) = 46266787130 = 6805722064 + 39461065066 = pi(168837298183) + pi(1051251461632) = pi(5527^3) + pi(10168^3). a(23) = 17563 since pi(17563^3) = pi(5417464872547) = 191548794617 = 15745791385 + 175803003232 = pi(404403154875) + pi(4956477625000) = pi(7395^3) + pi(17050^3). a(24) = 19146 since pi(19146^3) = pi(7018336124136) = 245897610272 = 58267274193 + 187630336079 = pi(1575879851853) + pi(5302614071672) = pi(11637^3) + pi(17438^3). a(25) = 21208 since pi(21208^3) = pi(9538918630912) = 330649999352 = 3733416265 + 326916583087 = pi(90277143256) + pi(9427361328125) = pi(4486^3) + pi(21125^3).
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
f[n_]:=PrimePi[n^3] T[1]:={0} T[n_]:=Union[T[n-1],{f[n]}] Do[n=0;Do[If[MemberQ[T[m-1],f[m]-f[k]],n=n+1;Print[n," ",m];Goto[aa]],{k,1,m-1}];Label[aa];Continue,{m,1,21350}]
Extensions
a(26)-a(42) from Chai Wah Wu, May 24 2018
Comments