cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262409 Positive integers m such that pi(m^3) = pi(j^3) + pi(k^3) for some 0 < j <= k < m.

Original entry on oeis.org

4, 89, 97, 101, 110, 196, 237, 372, 410, 1457, 2522, 3327, 4244, 4437, 5684, 5777, 7647, 8827, 9608, 9680, 9807, 10744, 17563, 19146, 21208, 23188, 27153, 28286, 34086, 35443, 40057, 49338, 49613, 54425, 55360, 56906, 61304, 69147, 69515, 73694, 84508, 95674
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 22 2015

Keywords

Comments

Conjecture: The Diophantine equation pi(x^3) + pi(y^3) = pi(z^3) with 0 < x <= y < z has infinitely many solutions.
The 25 terms we have found yield the following 25 solutions to the equation: (x,y,z) = (3,3,4), (54,80,89), (63,85,97), (27,100,101), (47,106,110), (80,190,196), (122,223,237), (229,335,372), (151,401,410), (263,1453,1457), (1302,2382,2522), (879,3301,3327), (2190,4011,4244), (498,4434,4437), (3792,4991,5684), (4496,4584,5777), (3113,7442,7647), (5239,8090,8827), (6904,8116,9608), (5659,8910,9680), (5323,9187,9807), (5527,10168,10744), (7395,17050,17563), (11637,17438,19146), (4486,21125,21208).
See also the conjecture in A262408 involving the n-th powers with n = 2,4,5,....
Solution triples (x,y,z) corresponding to a(n) for n = 26..42: (16440, 19774, 23188), (4775, 27091, 27153), (10708, 27687, 28286), (25272, 28248, 34086), (6302, 35360, 35443), (3941, 40040, 40057), (16336, 48639, 49338), (33631, 43365, 49613), (6206, 54390, 54425), (6741, 55317, 55360), (28160, 54247, 56906), (25339, 59637, 61304), (41473, 63300, 69147), (27684, 67825, 69515), (29690, 71841, 73694), (65989, 67172, 84508), (55781, 88294, 95674) - Chai Wah Wu, May 24 2018

Examples

			a(1) = 4 since pi(4^3) = pi(64) = 18 = 9 + 9 = pi(27) + pi(27) = pi(3^3) + pi(3^3).
a(2) = 89 since pi(89^3) = 56924 = 14479 + 42445 = pi(157464) + pi(512000) = pi(54^3) + pi(80^3).
a(22) = 10744 since pi(10744^3) = pi(1240217910784) = 46266787130 = 6805722064 + 39461065066 = pi(168837298183) + pi(1051251461632) = pi(5527^3) + pi(10168^3).
a(23) = 17563 since pi(17563^3) = pi(5417464872547) = 191548794617 = 15745791385 + 175803003232 = pi(404403154875) + pi(4956477625000) = pi(7395^3) + pi(17050^3).
a(24) = 19146 since pi(19146^3) = pi(7018336124136) = 245897610272 = 58267274193 + 187630336079 = pi(1575879851853) + pi(5302614071672) = pi(11637^3) + pi(17438^3).
a(25) = 21208 since pi(21208^3) = pi(9538918630912) = 330649999352 = 3733416265 + 326916583087 = pi(90277143256) + pi(9427361328125) = pi(4486^3) + pi(21125^3).
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=PrimePi[n^3]
    T[1]:={0}
    T[n_]:=Union[T[n-1],{f[n]}]
    Do[n=0;Do[If[MemberQ[T[m-1],f[m]-f[k]],n=n+1;Print[n," ",m];Goto[aa]],{k,1,m-1}];Label[aa];Continue,{m,1,21350}]

Extensions

a(26)-a(42) from Chai Wah Wu, May 24 2018