This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262410 #14 Sep 22 2015 18:10:44 %S A262410 5,37,275,2071,15781,121395,940915,7337560,57507892,452598884, %T A262410 3574599205,28316957579,224901946395,1790287826789,14279629073403, %U A262410 114097695427295,913103420246956,7317725618907700,58719917176448820,471733089071984376 %N A262410 a(n) = (n+1)*Sum_{k=1..n} binomial(n-1,k-1)*binomial(n+2*k+2,k+1)/(n+k+2). %F A262410 G.f.: B'(x)/B(x)-x*B'(x)-B(x), where B(x) is g.f. of A108447. %F A262410 Recurrence: 2*n*(n+1)*(2*n + 1)*(74*n^3 - 183*n^2 + 129*n - 18)*a(n) = 2*n*(1184*n^5 - 1744*n^4 - 242*n^3 + 857*n^2 - 201*n + 26)*a(n-1) + 2*(n-2)*(296*n^5 + 8*n^4 - 410*n^3 + 35*n^2 + 29*n - 18)*a(n-2) - 5*(n-3)*(n-2)*(n+2)*(74*n^3 + 39*n^2 - 15*n + 2)*a(n-3). - _Vaclav Kotesovec_, Sep 22 2015 %t A262410 Table[(n + 1) Sum[Binomial[n - 1, k - 1] Binomial[n + 2 k + 2, k + 1]/(n + k + 2), {k, n}], {n, 20}] (* _Michael De Vlieger_, Sep 22 2015 *) %o A262410 (Maxima) %o A262410 b(n):=sum((binomial(n-1,n-k)*binomial(2*k+n,k))/(n+k+1),k,0,n); %o A262410 B(x):=sum(b(n)*x^n,n,0,30); %o A262410 taylor(diff(B(x),x,1)/B(x)-x*(diff(B(x),x,1))-B(x),x,0,10); %o A262410 (PARI) a(n) = (n+1)*sum(k=1,n,((binomial(n-1,k-1) *binomial(n+2*k+2,k+1))/(n+k+2))) \\ _Anders Hellström_, Sep 22 2015 %Y A262410 Cf. A108447. %K A262410 nonn %O A262410 1,1 %A A262410 _Vladimir Kruchinin_, Sep 22 2015