This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262411 #14 Dec 11 2015 21:54:15 %S A262411 1,3,4,5,2,6,8,7,9,10,11,12,13,14,15,16,17,18,20,19,23,21,25,22,26,24, %T A262411 29,28,27,30,31,32,34,33,37,35,38,39,36,40,41,42,43,44,46,45,49,47,50, %U A262411 48,52,51,54,53,55,56,57,59,58,60,61,62,63,65,64,68,66 %N A262411 Lexicographically earliest sequence of distinct terms such that the ternary representations of two consecutive terms overlap. %C A262411 Suggested by Paul Tek's A262323; %C A262411 two numbers are overlapping if a nonempty prefix of one equals a suffix of the other; %C A262411 permutation of the natural numbers with inverse A262429; %C A262411 A262412(n) = A007089(a(n)). %H A262411 Reinhard Zumkeller, <a href="/A262411/b262411.txt">Table of n, a(n) for n = 1..10000</a> %H A262411 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A262411 . n | a(n) | A262412(n) n | a(n) | A262412(n) %e A262411 . ----+------+----------- ----+------+------------- %e A262411 . (25 | 26 | 222 ) %e A262411 . 1 | 1 | 1 26 | 24 | 220 %e A262411 . 2 | 3 | 10 27 | 29 | 1002 %e A262411 . 3 | 4 | 11 28 | 28 | 1001 %e A262411 . 4 | 5 | 12 29 | 27 | 1000 %e A262411 . 5 | 2 | 2 30 | 30 | 1010 %e A262411 . 6 | 6 | 20 31 | 31 | 1011 %e A262411 . 7 | 8 | 22 32 | 32 | 1012 %e A262411 . 8 | 7 | 21 33 | 34 | 1021 %e A262411 . 9 | 9 | 100 34 | 33 | 1020 %e A262411 . 10 | 10 | 101 35 | 37 | 1101 %e A262411 . 11 | 11 | 102 36 | 35 | 1022 %e A262411 . 12 | 12 | 110 37 | 38 | 1102 %e A262411 . 13 | 13 | 111 38 | 39 | 1110 %e A262411 . 14 | 14 | 112 39 | 36 | 1100 %e A262411 . 15 | 15 | 120 40 | 40 | 1111 %e A262411 . 16 | 16 | 121 41 | 41 | 1112 %e A262411 . 17 | 17 | 122 42 | 42 | 1120 %e A262411 . 18 | 18 | 200 43 | 43 | 1121 %e A262411 . 19 | 20 | 202 44 | 44 | 1122 %e A262411 . 20 | 19 | 201 45 | 46 | 1201 %e A262411 . 21 | 23 | 212 46 | 45 | 1200 %e A262411 . 22 | 21 | 210 47 | 49 | 1211 %e A262411 . 23 | 25 | 221 48 | 47 | 1202 %e A262411 . 24 | 22 | 211 49 | 50 | 1212 %e A262411 . 25 | 26 | 222 50 | 48 | 1210 . %e A262411 . (26 | 24 | 220 ) %o A262411 (Haskell) %o A262411 import Data.List (inits, tails, intersect, delete, genericIndex) %o A262411 a262411 n = genericIndex a262411_list (n - 1) %o A262411 a262411_list = 1 : f [1] (drop 2 a030341_tabf) where %o A262411 f xs tss = g tss where %o A262411 g (ys:yss) | null (intersect its $ tail $ inits ys) && %o A262411 null (intersect tis $ init $ tails ys) = g yss %o A262411 | otherwise = (foldr (\t v -> 3 * v + t) 0 ys) : %o A262411 f ys (delete ys tss) %o A262411 its = init $ tails xs; tis = tail $ inits xs %Y A262411 Cf. A262323, A030341, A007089, A262412 (ternary conversion), A262429 (inverse), A262435 (fixed points). %Y A262411 Cf. A262460. %K A262411 nonn,base %O A262411 1,2 %A A262411 _Reinhard Zumkeller_, Sep 22 2015