A262414 Number of (n+1) X (2+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.
0, 4, 12, 48, 144, 468, 1404, 4320, 12960, 39204, 117612, 353808, 1061424, 3187188, 9561564, 28693440, 86080320, 258267204, 774801612, 2324483568, 6973450704, 20920588308, 62761764924, 188286003360, 564858010080, 1694576156004
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..1..0....0..1..1....0..1..1....1..1..0....0..1..1....1..1..0....0..0..0 ..0..1..1....1..1..0....0..1..1....0..1..1....1..1..0....0..1..1....1..1..0 ..0..1..1....1..1..0....0..1..1....0..0..0....0..0..0....1..1..0....0..0..0 ..0..0..0....1..1..0....1..1..0....0..0..0....1..1..0....0..0..0....1..1..0 ..0..1..1....0..1..1....0..1..1....1..1..0....0..0..0....0..0..0....0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A262420.
Formula
Empirical: a(n) = 3*a(n-1) + 3*a(n-2) - 9*a(n-3).
Empirical g.f.: 4*x^2 / ((1 - 3*x)*(1 - 3*x^2)). - Colin Barker, Dec 31 2018