A262415 Number of (n+1) X (3+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.
6, 45, 270, 1701, 10206, 61965, 371790, 2237301, 13423806, 80601885, 483611310, 2902199301, 17413195806, 104483957805, 626903746830, 3761465527701, 22568793166206, 135413146417725, 812478878506350, 4874876757822501
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1..1....1..1..1..1....1..1..1..1....1..1..0..0....1..1..0..0 ..0..0..0..0....0..0..1..1....0..0..0..0....0..0..1..1....1..1..0..0 ..1..1..0..0....1..0..0..1....1..0..0..1....0..0..1..1....1..1..0..0 ..0..0..1..1....1..1..0..0....0..0..0..0....0..0..1..1....0..0..1..1 ..0..0..1..1....0..1..1..0....0..1..1..0....0..0..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A262420.
Formula
Empirical: a(n) = 6*a(n-1) + 9*a(n-2) - 54*a(n-3).
Conjectures from Colin Barker, Dec 31 2018: (Start)
G.f.: 3*x*(2 + 3*x - 18*x^2) / ((1 - 3*x)*(1 + 3*x)*(1 - 6*x)).
a(n) = 3^(n-1) * (2^(n+3) - 2) / 2 for n even.
a(n) = 3^(n-1) * (2^(n+3) - 4) / 2 for n odd.
(End)