A262416 Number of (n+1) X (4+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.
0, 114, 1260, 18228, 200880, 2353338, 25901100, 289462380, 3184570800, 35172555474, 386913644460, 4260476333988, 46865727906480, 515660423584938, 5672279881478700, 62399341247906460, 686393226739623600
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0..0..1....0..0..1..1..0....0..0..1..1..0....0..1..1..0..0 ..0..0..0..0..0....1..1..1..1..0....1..0..1..0..1....0..0..0..1..1 ..0..1..1..0..0....0..1..0..0..1....0..0..0..1..1....1..1..0..0..0 ..0..0..1..1..0....1..0..1..0..1....1..0..0..1..0....0..1..0..0..1 ..1..0..1..0..1....1..1..0..1..1....0..1..1..1..1....0..1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A262420.
Formula
Empirical: a(n) = 11*a(n-1) + 48*a(n-2) - 528*a(n-3) - 579*a(n-4) + 6369*a(n-5) + 1612*a(n-6) - 17732*a(n-7).
Empirical g.f.: 6*x^2*(19 + x - 184*x^2 + 14*x^3) / ((1 - 2*x)*(1 + 2*x)*(1 - 11*x)*(1 - 13*x^2)*(1 - 31*x^2)). - Colin Barker, Dec 31 2018