cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A262414 Number of (n+1) X (2+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

0, 4, 12, 48, 144, 468, 1404, 4320, 12960, 39204, 117612, 353808, 1061424, 3187188, 9561564, 28693440, 86080320, 258267204, 774801612, 2324483568, 6973450704, 20920588308, 62761764924, 188286003360, 564858010080, 1694576156004
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Examples

			Some solutions for n=4:
..1..1..0....0..1..1....0..1..1....1..1..0....0..1..1....1..1..0....0..0..0
..0..1..1....1..1..0....0..1..1....0..1..1....1..1..0....0..1..1....1..1..0
..0..1..1....1..1..0....0..1..1....0..0..0....0..0..0....1..1..0....0..0..0
..0..0..0....1..1..0....1..1..0....0..0..0....1..1..0....0..0..0....1..1..0
..0..1..1....0..1..1....0..1..1....1..1..0....0..0..0....0..0..0....0..1..1
		

Crossrefs

Column 2 of A262420.

Formula

Empirical: a(n) = 3*a(n-1) + 3*a(n-2) - 9*a(n-3).
Empirical g.f.: 4*x^2 / ((1 - 3*x)*(1 - 3*x^2)). - Colin Barker, Dec 31 2018

A262415 Number of (n+1) X (3+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

6, 45, 270, 1701, 10206, 61965, 371790, 2237301, 13423806, 80601885, 483611310, 2902199301, 17413195806, 104483957805, 626903746830, 3761465527701, 22568793166206, 135413146417725, 812478878506350, 4874876757822501
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Examples

			Some solutions for n=4:
..0..0..1..1....1..1..1..1....1..1..1..1....1..1..0..0....1..1..0..0
..0..0..0..0....0..0..1..1....0..0..0..0....0..0..1..1....1..1..0..0
..1..1..0..0....1..0..0..1....1..0..0..1....0..0..1..1....1..1..0..0
..0..0..1..1....1..1..0..0....0..0..0..0....0..0..1..1....0..0..1..1
..0..0..1..1....0..1..1..0....0..1..1..0....0..0..0..0....0..0..0..0
		

Crossrefs

Column 3 of A262420.

Formula

Empirical: a(n) = 6*a(n-1) + 9*a(n-2) - 54*a(n-3).
Conjectures from Colin Barker, Dec 31 2018: (Start)
G.f.: 3*x*(2 + 3*x - 18*x^2) / ((1 - 3*x)*(1 + 3*x)*(1 - 6*x)).
a(n) = 3^(n-1) * (2^(n+3) - 2) / 2 for n even.
a(n) = 3^(n-1) * (2^(n+3) - 4) / 2 for n odd.
(End)

A262416 Number of (n+1) X (4+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

0, 114, 1260, 18228, 200880, 2353338, 25901100, 289462380, 3184570800, 35172555474, 386913644460, 4260476333988, 46865727906480, 515660423584938, 5672279881478700, 62399341247906460, 686393226739623600
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Examples

			Some solutions for n=4:
..0..1..0..0..1....0..0..1..1..0....0..0..1..1..0....0..1..1..0..0
..0..0..0..0..0....1..1..1..1..0....1..0..1..0..1....0..0..0..1..1
..0..1..1..0..0....0..1..0..0..1....0..0..0..1..1....1..1..0..0..0
..0..0..1..1..0....1..0..1..0..1....1..0..0..1..0....0..1..0..0..1
..1..0..1..0..1....1..1..0..1..1....0..1..1..1..1....0..1..1..0..0
		

Crossrefs

Column 4 of A262420.

Formula

Empirical: a(n) = 11*a(n-1) + 48*a(n-2) - 528*a(n-3) - 579*a(n-4) + 6369*a(n-5) + 1612*a(n-6) - 17732*a(n-7).
Empirical g.f.: 6*x^2*(19 + x - 184*x^2 + 14*x^3) / ((1 - 2*x)*(1 + 2*x)*(1 - 11*x)*(1 - 13*x^2)*(1 - 31*x^2)). - Colin Barker, Dec 31 2018

A262417 Number of (n+1)X(5+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

22, 709, 15310, 428301, 9401742, 220808869, 4856629870, 108673357501, 2390753728462, 52824430238229, 1162134451107630, 25594859555510701, 563086760980631182, 12391301216924710789, 272608619423065220590
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Comments

Column 5 of A262420.

Examples

			Some solutions for n=3
..1..1..0..0..1..1....1..1..0..1..1..0....0..0..0..0..1..1....0..0..1..1..0..0
..1..1..1..1..1..1....0..1..1..1..1..0....1..0..0..1..0..0....1..1..1..1..1..1
..0..0..1..1..0..0....0..1..1..1..1..0....0..1..1..0..0..0....1..0..0..0..0..1
..1..1..1..1..1..1....0..0..1..0..0..1....0..0..0..0..0..0....1..0..1..1..0..1
		

Crossrefs

Cf. A262420.

Formula

Empirical: a(n) = 22*a(n-1) +215*a(n-2) -4730*a(n-3) -14143*a(n-4) +311146*a(n-5) +364285*a(n-6) -8014270*a(n-7) -3615956*a(n-8) +79551032*a(n-9) +9486400*a(n-10) -208700800*a(n-11)

A262418 Number of (n+1)X(6+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

0, 2892, 124572, 7577424, 326005344, 15231780324, 655089996204, 28755516792360, 1236553617638640, 53446495303862172, 2298231625018170492, 98951519822732397504, 4254930564828132559104, 183021121626516730866324
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Comments

Column 6 of A262420.

Examples

			Some solutions for n=3
..0..1..1..0..0..1..1....1..1..1..0..0..1..0....0..1..0..1..0..1..0
..0..1..1..0..1..1..0....0..1..0..1..1..0..1....1..0..1..0..0..0..1
..1..1..1..1..0..0..0....1..0..1..1..0..1..0....0..1..1..1..0..0..1
..0..0..0..0..1..1..0....1..1..1..1..0..0..0....0..0..1..0..1..0..1
		

Crossrefs

Cf. A262420.

Formula

Empirical: a(n) = 43*a(n-1) +777*a(n-2) -33411*a(n-3) -179235*a(n-4) +7707105*a(n-5) +17148167*a(n-6) -737371181*a(n-7) -706190268*a(n-8) +30366181524*a(n-9) +11010302352*a(n-10) -473443001136*a(n-11) -33794555200*a(n-12) +1453165873600*a(n-13)

A262419 Number of (n+1)X(7+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

86, 15293, 1299070, 163388421, 14036526126, 1326209720893, 114043973318270, 10040316574125941, 863461131233308366, 74693845931156134893, 6423667242365667891870, 553245019071999716394661
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Comments

Column 7 of A262420.

Examples

			Some solutions for n=2
..1..1..1..1..0..0..1..1....1..1..1..1..1..1..1..1....1..1..1..1..1..1..0..0
..1..0..0..0..1..0..1..0....0..1..0..1..0..0..0..1....1..1..0..1..0..0..1..0
..1..0..0..0..0..1..1..1....1..1..0..1..0..1..0..1....1..1..1..1..1..0..0..1
		

Crossrefs

Cf. A262420.

Formula

Empirical: a(n) = 86*a(n-1) +3252*a(n-2) -279672*a(n-3) -3329646*a(n-4) +286349556*a(n-5) +1544583660*a(n-6) -132834194760*a(n-7) -365579378025*a(n-8) +31439826510150*a(n-9) +46337467429704*a(n-10) -3985022198954544*a(n-11) -3102790005466128*a(n-12) +266839940470087008*a(n-13) +99548995158787584*a(n-14) -8561213583655732224*a(n-15) -1170690303846912000*a(n-16) +100679366130834432000*a(n-17) +3277061542543360000*a(n-18) -281827292658728960000*a(n-19)

A262421 Number of (2+1) X (n+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

5, 4, 45, 114, 709, 2892, 15293, 72370, 367125, 1808844, 9078925, 45214674, 226307429, 1130307532, 5653140573, 28257215730, 141297157045, 706426855884, 3532211260205, 17660645718034, 88303765183749, 441515959527372
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Examples

			Some solutions for n=4:
..1..1..0..0..0....0..1..1..0..0....1..1..1..1..0....1..1..0..1..1
..0..1..0..0..1....1..1..0..1..1....1..1..0..0..0....0..1..1..0..0
..1..1..1..1..0....0..1..1..0..0....1..1..0..1..1....1..1..0..0..0
		

Crossrefs

Row 2 of A262420.

Formula

Empirical: a(n) = 5*a(n-1) + 12*a(n-2) - 60*a(n-3) - 39*a(n-4) + 195*a(n-5) + 28*a(n-6) - 140*a(n-7).
Empirical g.f.: x*(5 - 21*x - 35*x^2 + 141*x^3 + 34*x^4 - 140*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)*(1 - 5*x)*(1 - 7*x^2)). - Colin Barker, Dec 31 2018

A262422 Number of (3+1) X (n+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

10, 12, 270, 1260, 15310, 124572, 1299070, 12380940, 124921710, 1235566332, 12379963870, 123483616620, 1235387708110, 12346379507292, 123476688644670, 1234585890852300, 12346166930494510, 123457247499499452
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Comments

Row 3 of A262420.

Examples

			Some solutions for n=4
..1..1..0..1..1....0..1..1..1..1....0..0..0..1..1....0..0..1..1..0
..0..0..1..1..0....1..1..1..1..0....1..1..0..1..1....0..1..0..0..1
..0..1..1..1..1....1..1..0..1..1....1..0..0..1..0....1..0..1..0..1
..0..1..1..0..0....1..0..1..0..1....1..0..1..0..1....0..1..0..0..1
		

Crossrefs

Cf. A262420.

Formula

Empirical: a(n) = 10*a(n-1) +46*a(n-2) -460*a(n-3) -609*a(n-4) +6090*a(n-5) +2164*a(n-6) -21640*a(n-7) -1600*a(n-8) +16000*a(n-9).

A262423 Number of (4+1)X(n+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

21, 48, 1701, 18228, 428301, 7577424, 163388421, 3287265300, 69481709901, 1443547193328, 30363542104581, 635919555126708, 13359727300650381, 280364385485387664, 5888252348126720901, 123632237885054793300
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Comments

Row 4 of A262420.

Examples

			Some solutions for n=4
..0..0..1..1..0....1..0..1..0..1....1..1..0..0..0....1..0..0..1..0
..0..0..0..0..0....0..1..0..0..1....0..0..0..1..1....1..0..0..1..0
..1..1..0..0..0....1..1..0..1..1....0..0..1..1..0....1..0..0..1..0
..0..1..0..0..1....1..1..0..0..0....0..0..1..1..0....0..1..0..0..1
..0..1..1..0..0....1..0..0..1..0....0..1..1..0..0....0..0..1..1..0
		

Crossrefs

Cf. A262420.

Formula

Empirical: a(n) = 21*a(n-1) +189*a(n-2) -3969*a(n-3) -10719*a(n-4) +225099*a(n-5) +250803*a(n-6) -5266863*a(n-7) -2527200*a(n-8) +53071200*a(n-9) +9062928*a(n-10) -190321488*a(n-11)

A262424 Number of (5+1)X(n+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

42, 144, 10206, 200880, 9401742, 326005344, 14036526126, 562188062160, 23753751161742, 985963486014144, 41471657300369646, 1736701374341409840, 72968249610859102542, 3062420548152290816544, 128633450602627230830766
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Comments

Row 5 of A262420.

Examples

			Some solutions for n=3
..0..0..0..0....0..0..1..1....1..1..0..0....0..1..1..0....1..1..1..1
..0..1..1..0....1..1..0..0....0..0..0..0....1..0..0..1....0..0..0..0
..1..1..0..0....0..0..1..1....0..0..0..0....0..1..1..0....1..1..0..0
..0..1..1..0....0..0..1..1....1..0..0..1....1..1..0..0....1..1..0..0
..1..0..0..1....1..1..0..0....0..1..1..0....0..0..0..0....1..1..1..1
..0..0..0..0....1..1..0..0....1..0..0..1....0..0..1..1....1..1..0..0
		

Crossrefs

Cf. A262420.

Formula

Empirical: a(n) = 42*a(n-1) +711*a(n-2) -29862*a(n-3) -141183*a(n-4) +5929686*a(n-5) +10349613*a(n-6) -434683746*a(n-7) -267400116*a(n-8) +11230804872*a(n-9) +1666598976*a(n-10) -69997156992*a(n-11)
Showing 1-10 of 13 results. Next