cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262427 Decimal expansion of the complete elliptic integral of the first kind at sqrt(2*sqrt(2) - 2).

This page as a plain text file.
%I A262427 #39 Apr 15 2024 04:16:46
%S A262427 2,3,2,7,1,8,5,1,4,2,4,3,6,5,3,8,7,5,0,6,0,5,0,3,6,2,8,5,6,1,8,3,5,7,
%T A262427 0,7,7,5,1,5,1,8,1,7,5,8,2,3,2,5,4,1,1,7,4,7,9,3,2,0,8,1,9,9,4,4,6,1,
%U A262427 1,8,8,2,5,7,3,1,3,6,0,4,9,5,7,8,2,2,5,9,0,0,7,0,1,1,0,6,6,1,0,5,6,2,3,7,1
%N A262427 Decimal expansion of the complete elliptic integral of the first kind at sqrt(2*sqrt(2) - 2).
%H A262427 G. C. Greubel, <a href="/A262427/b262427.txt">Table of n, a(n) for n = 1..10000</a>
%H A262427 M. L. Glasser and V. E. Wood, <a href="http://dx.doi.org/10.1090/S0025-5718-71-99714-6">A closed form evaluation of the elliptic integral</a>, Math. Comp. 25 (1971), 535-536.
%F A262427 Equals Pi^(3/2)*sqrt(4 + 2*sqrt(2))/(4*Gamma(5/8)*Gamma(7/8)).
%F A262427 Also equals sqrt(2)*K(sqrt(2) - 1).
%F A262427 Also equals 2*Integral_{x=0..1} 1/sqrt(1-x^8) dx. - _Christian N. Hofmann_, Jun 24 2023
%F A262427 Also equals Pi^(3/2)*cos(Pi/4)*cos(Pi/8)/(Gamma(5/8)*Gamma(7/8)). - _Christian N. Hofmann_, Aug 20 2023
%F A262427 Equals Gamma(1/8)^2 / (2^(11/4) * Gamma(1/4)). - _Vaclav Kotesovec_, Apr 15 2024
%e A262427 2.3271851424365387506050362856183570775151817582325411747932...
%p A262427 evalf(sqrt(2)*EllipticK(sqrt(2)-1), 120); # _Vaclav Kotesovec_, Sep 22 2015
%p A262427 evalf(int(2/sqrt(1-x^8), x=0..1), 120); # _Christian N. Hofmann_, Jun 28 2023
%t A262427 K[x_] := EllipticK[x^2/(x^2 - 1)]/Sqrt[1 - x^2]; RealDigits[ K[Sqrt[2 Sqrt[2] - 2]], 10, 105][[1]]
%o A262427 (PARI) ellk(k)=intnum(t=0,1,1/sqrt((1-t^2)*(1-(k*t)^2)))
%o A262427 sqrt(2)*ellk(sqrt(2)-1) \\ _Charles R Greathouse IV_, Apr 18 2016
%o A262427 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)^(3/2)*Sqrt(4 + 2*Sqrt(2))/(4*Gamma(5/8)*Gamma(7/8)); // _G. C. Greubel_, Oct 07 2018
%Y A262427 Cf. A130786.
%K A262427 cons,nonn
%O A262427 1,1
%A A262427 _Jean-François Alcover_, Sep 22 2015