A262439 Number of primes not exceeding 1+n*(n+1)/2.
1, 2, 4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 24, 27, 30, 33, 36, 39, 43, 47, 50, 54, 59, 62, 66, 70, 75, 79, 84, 90, 94, 99, 102, 108, 115, 121, 126, 131, 137, 142, 149, 154, 161, 167, 174, 180, 189, 193, 200, 205, 217, 220, 226, 235, 242, 251, 259, 267, 274, 282, 290, 297, 306, 313, 324, 329, 338, 348, 358, 367
Offset: 1
Keywords
Examples
a(3) = 4 since there are exactly four primes (namely, 2, 3, 5, 7) not exceeding 1 + 3*4/2 = 7.
References
- R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. (Cf. Section C6 on addition chains.)
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Neill Clift, Prime Count and Addition Chains, 2024.
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
a[n_]:=PrimePi[1+n(n+1)/2] Do[Print[n," ",a[n]],{n,1,70}]
Comments