cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262439 Number of primes not exceeding 1+n*(n+1)/2.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 24, 27, 30, 33, 36, 39, 43, 47, 50, 54, 59, 62, 66, 70, 75, 79, 84, 90, 94, 99, 102, 108, 115, 121, 126, 131, 137, 142, 149, 154, 161, 167, 174, 180, 189, 193, 200, 205, 217, 220, 226, 235, 242, 251, 259, 267, 274, 282, 290, 297, 306, 313, 324, 329, 338, 348, 358, 367
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 22 2015

Keywords

Comments

Conjecture: (i) The sequence is strictly increasing, and also a(n)^(1/n) > a(n+1)^(1/(n+1)) for all n = 3,4,....
(ii) The sequence is an addition chain. In other words, for each n = 2,3,... we have a(n) = a(k) + a(m) for some 0 < k <= m < n.
(iii) All the numbers Sum_{i=j..k} 1/a(i) with 0 < min{2,k} <= j <= k have pairwise distinct fractional parts.
See also A262446 related to part (ii) of this conjecture.
Concerning part (ii) of the conjecture, Neill Clift verified in 2024 that for all 1 < n <= 2^24 = 16777216 we have a(n) = a(k) + a(m) for some 0 < k <= m < n. - Zhi-Wei Sun, Jan 29 2024

Examples

			a(3) = 4 since there are exactly four primes (namely, 2, 3, 5, 7) not exceeding 1 + 3*4/2 = 7.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. (Cf. Section C6 on addition chains.)
  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    a[n_]:=PrimePi[1+n(n+1)/2]
    Do[Print[n," ",a[n]],{n,1,70}]