cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262443 Positive integers m such that pi(m^2) = pi(j^2)*pi(k^2) for some 0 < j < k < m, where pi(x) denotes the number of primes not exceeding x.

Original entry on oeis.org

8, 11, 14, 19, 20, 36, 38, 45, 66, 87, 91, 115, 139, 143, 152, 155, 201, 220, 227, 279, 357, 383, 391, 415, 418, 452, 476, 480, 489, 496, 500, 514, 521, 524, 549, 552, 557, 588, 595, 632, 653, 676, 706, 708, 749, 753, 761, 766, 820, 846, 863, 877, 922, 1009, 1038, 1041, 1044, 1052, 1057, 1080
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 23 2015

Keywords

Comments

Conjecture: (i) The sequence has infinitely many terms. Also, there are infinitely many positive integers m such that pi(m^2) = pi(j^2)*pi(k^2) for no 0 < j <= k < m.
(ii) For any integer n > 2, the equation pi(x^n)*pi(y^n) = pi(z^n) has no solution with 0 < x <= y < z.

Examples

			 a(1) = 8 since pi(8^2) = pi(64) = 18 = 2*9 = pi(2^2)*pi(5^2) with 0 < 2 < 5 < 8.
a(4) = 19 since pi(19^2) = pi(361) = 72 = 4*18 = pi(3^2)*pi(8^2) with 0 < 3 < 8 < 19.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=PrimePi[n^2]
    T[n_]:=Table[f[k],{k,1,n}]
    Dv[n_]:=Divisors[f[n]]
    Le[n_]:=Length[Dv[n]]
    n=0;Do[Do[If[MemberQ[T[m],Part[Dv[m],i]]&&MemberQ[T[m],Part[Dv[m],Le[m]-i+1]],n=n+1;Print[n," ",m];Goto[aa]],{i,2,(Le[m]-1)/2}];Label[aa];Continue,{m,1,1080}]