cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262444 Number of 3-colored integer partitions such that no adjacent parts have the same color.

This page as a plain text file.
%I A262444 #30 Sep 02 2023 18:48:16
%S A262444 1,3,9,21,51,111,249,525,1119,2319,4809,9825,20079,40671,82341,165945,
%T A262444 334191,671307,1347861,2702385,5416395,10847787,21720981,43474869,
%U A262444 87004875,174081051,348279777,696712749,1393674603,2787673767,5575871457,11152425093,22305942039
%N A262444 Number of 3-colored integer partitions such that no adjacent parts have the same color.
%H A262444 Alois P. Heinz, <a href="/A262444/b262444.txt">Table of n, a(n) for n = 0..1000</a>
%H A262444 Ran Pan, <a href="http://arxiv.org/abs/1509.06107">A note on enumerating colored integer partitions</a>, arXiv:1509.06107 [math.CO], 2015.
%F A262444 G.f.: -1/2 + (3/2)*Product_{k>=1} 1/(1-2*x^k).
%F A262444 a(n) = floor(3/2*A070933(n)).
%F A262444 a(n) = Sum_{k=0..3} 6/k! * A262495(n,3-k). - _Alois P. Heinz_, Sep 24 2015
%e A262444 a(2) = 9 because there are two integer partitions of 2: [2], [1,1] and there are three ways to color [2] and 3 X 2 = 6 ways to color [1,1].
%p A262444 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A262444       b(n, i-1) +`if`(i>n, 0, 2*b(n-i, i))))
%p A262444     end:
%p A262444 a:= n-> floor(b(n$2)/2*3):
%p A262444 seq(a(n), n=0..50);  # _Alois P. Heinz_, Sep 23 2015
%t A262444 Rest[CoefficientList[Series[3/2 Product[1/(1 - 2 x^k), {k, 1, 35}], {x, 0, 35}], x]] (* _Vincenzo Librandi_, Sep 23 2015 *)
%Y A262444 Cf. A070933, A262495.
%K A262444 nonn,easy
%O A262444 0,2
%A A262444 _Ran Pan_, Sep 23 2015