cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A262403 Number of ways to write pi(T(n)) = pi(T(k)) + pi(T(m)) with 1 < k < m < n, where T(x) is the triangular number x*(x+1)/2, and pi(x) is the number of primes not exceeding x.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 2, 1, 3, 4, 4, 4, 3, 3, 3, 3, 5, 4, 3, 4, 6, 4, 5, 2, 3, 6, 4, 1, 5, 8, 3, 2, 6, 1, 4, 5, 4, 2, 7, 2, 4, 5, 5, 5, 3, 4, 9, 9, 4, 5, 4, 8, 7, 6, 9, 4, 7, 5, 6, 2, 5, 9, 3, 8, 5, 6, 8, 5, 4, 3, 8, 4, 8, 7, 8, 5, 7, 8, 7, 4, 6, 2, 7, 7, 8, 7, 4, 5, 6, 4, 6, 4, 6, 4, 6, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 21 2015

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 4, and a(n) = 1 only for n = 5, 6, 7, 10, 12, 32, 38, 445, 727.
(ii) All those numbers pi(T(n)) (n = 1,2,3,...) are pairwise distinct. Moreover, if sum_{i=j,...,k}1/pi(T(i)) and sum_{r=s,...,t}1/pi(T(r)) with 1 < j <= k and j <= s <= t have the same fractional part but the ordered pairs (j,k) and (s,t) are different, then j = 2, k = 5 and s = t = 4.
Clearly, part (i) is related to addition chains, and the first assertion in part (ii) is an analog of Legendre's conjecture that pi(n^2) < pi((n+1)^2) for all n = 1,2,3,....
See also A262408 and A262409 for related conjectures involving powers.

Examples

			a(5) = 1 since pi(T(5)) = pi(15) = 6 = 2 + 4 = pi(3) + pi(10) = pi(T(2)) + pi(T(4)).
a(6) = 1 since pi(T(6)) = pi(21) = 8 = 2 + 6 = pi(3) + pi(15) = pi(T(2)) + pi(T(5)).
a(7) = 1 since pi(T(7)) = pi(28) = 9 = 3 + 6 = pi(6) + pi(15) = pi(T(3)) + pi(T(5)).
a(10) = 1 since pi(T(10)) = pi(55) = 16 = 2 + 14 = pi(3) + pi(45) = pi(T(2)) + pi(T(9)).
a(12) = 1 since pi(T(12)) = pi(78) = 21 = 3 + 18 = pi(6) + pi(66) = pi(T(3)) + pi(T(11)).
a(32) = 1 since pi(T(32)) = pi(528) = 99 = 9 + 90 = pi(28) + pi(465) = pi(T(7)) + pi(T(30)).
a(38) = 1 since pi(T(38)) = pi(741) = 131 = 32 + 99 = pi(136) + pi(528) = pi(T(16)) + pi(T(32)).
a(445) = 1 since pi(T(445)) = pi(99235) = 9526 = 2963 + 6563 = pi(27028) + pi(65703) = pi(T(232)) + pi(T(362)).
a(727) = 1 since pi(T(727)) = pi(264628) = 23197 = 10031 + 13166 = pi(105111) + pi(141778) = pi(T(458)) + pi(T(532)).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. (Cf. Section C6 on addition chains.)
  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=PrimePi[n(n+1)/2]
    T[m_,n_]:=Table[f[k],{k,m,n}]
    Do[r=0;Do[If[MemberQ[T[k+1,n-1],f[n]-f[k]],r=r+1];Continue,{k,2,n-2}];Print[n," ",r];Continue,{n,1,100}]

A262995 Number of ordered pairs (k,m) with k > 0 and m > 0 such that n = pi(k*(k+1)/2) + pi(1+m*(m+1)/2), where pi(x) denotes the number of primes not exceeding x.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 3, 5, 3, 6, 3, 6, 4, 6, 4, 7, 4, 6, 6, 6, 4, 8, 5, 6, 6, 7, 5, 8, 4, 9, 5, 7, 9, 5, 7, 8, 6, 9, 5, 9, 7, 7, 8, 8, 6, 8, 8, 8, 6, 7, 10, 8, 4, 12, 6, 8, 7, 9, 6, 10, 6, 8, 10, 8, 6, 12, 4, 12, 6, 11, 6, 11, 6, 9, 10, 8, 7, 11, 7, 10, 8, 9, 7, 10, 7, 13, 5, 7, 11, 9, 6, 8, 12, 8, 7, 11, 7, 12, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 07 2015

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0.
This has been verified for n up to 10^5. See also A262999 for a similar conjecture.
By Chebyshev's inequality, pi(n*(n+1)/2) > n-1 for all n > 1.
In A262403 and A262439, the author conjectured that the sequences pi(n*(n+1)/2) (n = 1,2,3,...) and pi(1+n*(n+1)/2) (n = 1,2,3,...) are both strictly increasing.

Examples

			a(1) = 1 since 1 = pi(1*2/2) + pi(1+1*2/2).
a(2) = 1 since 2 = pi(1*2/2) + pi(1+2*3/2).
a(3) = 1 since 3 = pi(2*3/2) + pi(1+1*2/2).
a(4) = 3 since 4 = pi(1*2/2) + pi(1+3*4/2) = pi(2*3/2) + pi(1+2*3/2) = pi(3*4/2) + pi(1+1*2/2).
		

Crossrefs

Programs

  • Mathematica
    s[k_]:=s[k]=PrimePi[k(k+1)/2+1]
    t[n_]:=t[n]=PrimePi[n(n+1)/2]
    Do[r=0;Do[If[s[k]>n,Goto[bb]];Do[If[t[j]>n-s[k],Goto[aa]];If[t[j]==n-s[k],r=r+1];Continue,{j,1,n-s[k]+1}];Label[aa];Continue,{k,1,n}];Label[bb];Print[n," ",r];Continue,{n,1,100}]

A262439 Number of primes not exceeding 1+n*(n+1)/2.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 24, 27, 30, 33, 36, 39, 43, 47, 50, 54, 59, 62, 66, 70, 75, 79, 84, 90, 94, 99, 102, 108, 115, 121, 126, 131, 137, 142, 149, 154, 161, 167, 174, 180, 189, 193, 200, 205, 217, 220, 226, 235, 242, 251, 259, 267, 274, 282, 290, 297, 306, 313, 324, 329, 338, 348, 358, 367
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 22 2015

Keywords

Comments

Conjecture: (i) The sequence is strictly increasing, and also a(n)^(1/n) > a(n+1)^(1/(n+1)) for all n = 3,4,....
(ii) The sequence is an addition chain. In other words, for each n = 2,3,... we have a(n) = a(k) + a(m) for some 0 < k <= m < n.
(iii) All the numbers Sum_{i=j..k} 1/a(i) with 0 < min{2,k} <= j <= k have pairwise distinct fractional parts.
See also A262446 related to part (ii) of this conjecture.
Concerning part (ii) of the conjecture, Neill Clift verified in 2024 that for all 1 < n <= 2^24 = 16777216 we have a(n) = a(k) + a(m) for some 0 < k <= m < n. - Zhi-Wei Sun, Jan 29 2024

Examples

			a(3) = 4 since there are exactly four primes (namely, 2, 3, 5, 7) not exceeding 1 + 3*4/2 = 7.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. (Cf. Section C6 on addition chains.)
  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    a[n_]:=PrimePi[1+n(n+1)/2]
    Do[Print[n," ",a[n]],{n,1,70}]
Showing 1-3 of 3 results.