A262447 Primes p such that pi(p^2) = pi(q^2) + pi(r^2) for some distinct primes q and r.
13, 53, 73, 131, 199, 277, 281, 283, 313, 353, 641, 643, 647, 701, 773, 839, 887, 977, 1033, 1103, 1117, 1163, 1187, 1223, 1259, 1409, 1433, 1439, 1487, 1489, 1583, 1721, 1913, 1931, 2239, 2243, 2269, 2309, 2371, 2441, 2473, 2477, 2621, 2683, 2707, 2797, 2843, 2851, 2953, 3049, 3137, 3257, 3307, 3499, 3511, 3613, 3659, 3769, 3779, 3911
Offset: 1
Keywords
Examples
a(1) = 13 since pi(13^2) = pi(169) = 39 = 9 + 30 = pi(5^2) + pi(11^2) with 13, 5 and 11 distinct primes.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..500 from Zhi-Wei Sun)
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
f[n_]:=PrimePi[Prime[n]^2] T[n_]:=Table[f[k],{k,1,n}] n=0;Do[Do[If[2*f[k]>=f[m],Goto[aa]];If[MemberQ[T[m-1],f[m]-f[k]],n=n+1;Print[n," ",Prime[m]];Goto[aa]];Continue,{k,1,m-1}];Label[aa];Continue,{m,1,541}]
Comments