cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262460 Lexicographically earliest sequence of distinct terms such that the hexadecimal representations of two consecutive terms overlap.

This page as a plain text file.
%I A262460 #13 Feb 16 2025 08:33:27
%S A262460 1,16,17,18,2,32,34,33,19,3,35,48,51,49,20,4,36,50,37,5,21,65,22,6,38,
%T A262460 66,39,7,23,81,24,8,40,82,41,9,25,97,26,10,42,98,43,11,27,113,28,12,
%U A262460 44,114,45,13,29,129,30,14,46,130,47,15,31,145,57,67,52,64
%N A262460 Lexicographically earliest sequence of distinct terms such that the hexadecimal representations of two consecutive terms overlap.
%C A262460 Suggested by Paul Tek's A262323;
%C A262460 two numbers are overlapping if a nonempty prefix of one equals a suffix of the other;
%C A262460 permutation of the natural numbers with inverse A262461.
%H A262460 Reinhard Zumkeller, <a href="/A262460/b262460.txt">Table of n, a(n) for n = 1..10000</a>
%H A262460 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Hexadecimal.html">Hexadecimal</a>
%H A262460 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hexadecimal">Hexadecimal</a>
%H A262460 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A262460 Table of initial terms: the HEX column gives the hexadecimal representation with aligned overlapping digits.
%e A262460 .   n | a(n) | HEX          n | a(n) | HEX          n | a(n) | HEX
%e A262460 . ----+------+-------     ----+------+-------     ----+------+-------
%e A262460 .   1 |    1 |  1          25 |   38 |   26        49 |   44 |    2C
%e A262460 .   2 |   16 |  10         26 |   66 |  42         50 |  114 |   72
%e A262460 .   3 |   17 | 11          27 |   39 |   27        51 |   45 |    2D
%e A262460 .   4 |   18 |  12         28 |    7 |    7        52 |   13 |     D
%e A262460 .   5 |    2 |   2         29 |   23 |   17        53 |   29 |    1D
%e A262460 .   6 |   32 |   20        30 |   81 |  51         54 |  129 |   81
%e A262460 .   7 |   34 |  22         31 |   24 |   18        55 |   30 |    1E
%e A262460 .   8 |   33 |   21        32 |    8 |    8        56 |   14 |     E
%e A262460 .   9 |   19 |    13       33 |   40 |   28        57 |   46 |    2E
%e A262460 .  10 |    3 |     3       34 |   82 |  52         58 |  130 |   82
%e A262460 .  11 |   35 |    23       35 |   41 |   29        59 |   47 |    2F
%e A262460 .  12 |   48 |     30      36 |    9 |    9        60 |   15 |     F
%e A262460 .  13 |   51 |    33       37 |   25 |   19        61 |   31 |    1F
%e A262460 .  14 |   49 |     31      38 |   97 |  61         62 |  145 |   91
%e A262460 .  15 |   20 |      14     39 |   26 |   1A        63 |   57 |  39
%e A262460 .  16 |    4 |       4     40 |   10 |    A        64 |   67 | 43
%e A262460 .  17 |   36 |      24     41 |   42 |   2A        65 |   52 |  34
%e A262460 .  18 |   50 |     32      42 |   98 |  62         66 |   64 |   40
%e A262460 .  19 |   37 |      25     43 |   43 |   2B        67 |   68 |  44
%e A262460 .  20 |    5 |       5     44 |   11 |    B        68 |   69 |   45
%e A262460 .  21 |   21 |      15     45 |   27 |   1B        69 |   80 |    50
%e A262460 .  22 |   65 |     41      46 |  113 |  71         70 |   53 |   35
%e A262460 .  23 |   22 |      16     47 |   28 |   1C        71 |   83 |    53
%e A262460 .  24 |    6 |       6     48 |   12 |    C        72 |   54 |     36
%o A262460 (Haskell)
%o A262460 import Data.List (inits, tails, intersect, delete, genericIndex)
%o A262460 a262460 n = genericIndex a262460_list (n - 1)
%o A262460 a262460_list = 1 : f [1] (drop 2 a262437_tabf) where
%o A262460    f xs tss = g tss where
%o A262460      g (ys:yss) | null (intersect its $ tail $ inits ys) &&
%o A262460                   null (intersect tis $ init $ tails ys) = g yss
%o A262460                 | otherwise = (foldr (\t v -> 16 * v + t) 0 ys) :
%o A262460                               f ys (delete ys tss)
%o A262460      its = init $ tails xs; tis = tail $ inits xs
%Y A262460 Cf. A262323, A262411, A262437, A262461 (inverse).
%K A262460 nonn,base
%O A262460 1,2
%A A262460 _Reinhard Zumkeller_, Sep 23 2015