A262466 Number of (n+1) X (2+1) 0..1 arrays with each row divisible by 3 and each column divisible by 5, read as a binary number with top and left being the most significant bits.
1, 3, 9, 17, 37, 107, 321, 865, 2449, 7299, 21897, 64625, 192277, 576299, 1728897, 5174977, 15507361, 46516227, 139548681, 418517201, 1255358341, 3766010603, 11298031809, 33892678177, 101675908657, 305027017347, 915081052041
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..1..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....1..1..0 ..1..1..0....1..1..0....1..1..0....1..1..0....0..0..0....0..1..1....1..1..0 ..1..1..0....0..1..1....1..1..0....0..0..0....1..1..0....0..0..0....0..0..0 ..1..1..0....1..1..0....1..1..0....1..1..0....0..0..0....0..1..1....0..0..0 ..0..0..0....0..1..1....1..1..0....0..0..0....1..1..0....0..0..0....1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A262472.
Formula
Empirical: a(n) = 4*a(n-1) - 4*a(n-2) + 4*a(n-3) + 8*a(n-4) - 44*a(n-5) + 44*a(n-6) - 44*a(n-7) + 33*a(n-8).
Empirical g.f.: x*(1 - x + x^2 - 11*x^3 - 15*x^4 + 11*x^5 - 11*x^6 + 33*x^7) / ((1 - x)*(1 - 3*x)*(1 + x^2)*(1 - 11*x^4)). - Colin Barker, Mar 20 2018
Comments