This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262472 #4 Sep 23 2015 18:52:24 %S A262472 1,1,2,1,3,4,1,6,9,7,1,11,36,17,13,1,22,121,115,37,26,1,43,484,457, %T A262472 469,107,52,1,86,1849,3055,2413,2622,321,103,1,171,7396,16081,30229, %U A262472 22907,15732,865,205,1,342,29241,107731,234421,552430,239281,85723,2449,410,1 %N A262472 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each row divisible by 3 and each column divisible by 5, read as a binary number with top and left being the most significant bits. %C A262472 Table starts %C A262472 ...1....1.......1.........1...........1............1............1............1 %C A262472 ...2....3.......6........11..........22...........43...........86..........171 %C A262472 ...4....9......36.......121.........484.........1849.........7396........29241 %C A262472 ...7...17.....115.......457........3055........16081.......107731.......655001 %C A262472 ..13...37.....469......2413.......30229.......234421......2924245.....29005981 %C A262472 ..26..107....2622.....22907......552430......8080915....194647694...3858564731 %C A262472 ..52..321...15732....239281....11489332....326748241..15659602612.630055962801 %C A262472 .103..865...85723...2028469...198237391..10190636521.997197229531 %C A262472 .205.2449..494605..19072681..3805146805.367750753321 %C A262472 .410.7299.2942190.195594107.77803476910 %H A262472 R. H. Hardin, <a href="/A262472/b262472.txt">Table of n, a(n) for n = 1..112</a> %F A262472 Empirical for column k: %F A262472 k=1: a(n) = 3*a(n-1) -3*a(n-2) +3*a(n-3) -2*a(n-4) %F A262472 k=2: [order 8] %F A262472 k=3: [order 15] %F A262472 k=4: [order 73] %F A262472 Empirical for row n: %F A262472 n=1: a(n) = a(n-1) %F A262472 n=2: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) %F A262472 n=3: a(n) = 4*a(n-1) +5*a(n-2) -20*a(n-3) -4*a(n-4) +16*a(n-5) %F A262472 n=4: [order 13] %F A262472 n=5: [order 33] %F A262472 n=6: [order 67] %e A262472 Some solutions for n=4 k=4 %e A262472 ..0..0..0..0..0....0..0..0..0..0....0..1..1..0..0....0..1..0..0..1 %e A262472 ..0..1..0..0..1....0..1..1..0..0....0..1..0..0..1....0..0..0..1..1 %e A262472 ..0..0..0..0..0....0..1..0..0..1....0..1..1..1..1....0..1..0..0..1 %e A262472 ..0..1..0..0..1....0..1..1..0..0....0..1..0..0..1....0..0..0..1..1 %e A262472 ..0..0..0..0..0....0..1..0..0..1....0..0..0..1..1....0..0..0..0..0 %Y A262472 Column 1 is A262267(n-1). %Y A262472 Row 2 is A005578(n+1). %K A262472 nonn,tabl %O A262472 1,3 %A A262472 _R. H. Hardin_, Sep 23 2015