cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A262466 Number of (n+1) X (2+1) 0..1 arrays with each row divisible by 3 and each column divisible by 5, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

1, 3, 9, 17, 37, 107, 321, 865, 2449, 7299, 21897, 64625, 192277, 576299, 1728897, 5174977, 15507361, 46516227, 139548681, 418517201, 1255358341, 3766010603, 11298031809, 33892678177, 101675908657, 305027017347, 915081052041
Offset: 1

Views

Author

R. H. Hardin, Sep 23 2015

Keywords

Comments

Column 2 of A262472.

Examples

			Some solutions for n=4:
..1..1..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....1..1..0
..1..1..0....1..1..0....1..1..0....1..1..0....0..0..0....0..1..1....1..1..0
..1..1..0....0..1..1....1..1..0....0..0..0....1..1..0....0..0..0....0..0..0
..1..1..0....1..1..0....1..1..0....1..1..0....0..0..0....0..1..1....0..0..0
..0..0..0....0..1..1....1..1..0....0..0..0....1..1..0....0..0..0....1..1..0
		

Crossrefs

Cf. A262472.

Formula

Empirical: a(n) = 4*a(n-1) - 4*a(n-2) + 4*a(n-3) + 8*a(n-4) - 44*a(n-5) + 44*a(n-6) - 44*a(n-7) + 33*a(n-8).
Empirical g.f.: x*(1 - x + x^2 - 11*x^3 - 15*x^4 + 11*x^5 - 11*x^6 + 33*x^7) / ((1 - x)*(1 - 3*x)*(1 + x^2)*(1 - 11*x^4)). - Colin Barker, Mar 20 2018

A262467 Number of (n+1)X(3+1) 0..1 arrays with each row divisible by 3 and each column divisible by 5, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

1, 6, 36, 115, 469, 2622, 15732, 85723, 494605, 2942190, 17653140, 105022051, 628157125, 3765830046, 22594980276, 135471987115, 812624087485, 4875367337166, 29252204022996, 175502212001971, 1052990612251381
Offset: 1

Views

Author

R. H. Hardin, Sep 23 2015

Keywords

Comments

Column 3 of A262472.

Examples

			Some solutions for n=4
..0..1..1..0....0..0..1..1....1..1..1..1....0..0..0..0....1..1..0..0
..0..1..1..0....0..0..1..1....1..0..0..1....0..1..1..0....0..0..0..0
..0..1..1..0....1..1..0..0....0..1..1..0....0..0..0..0....1..1..1..1
..0..1..1..0....0..0..0..0....0..0..0..0....0..1..1..0....0..0..0..0
..0..0..0..0....1..1..1..1....1..0..0..1....0..0..0..0....0..0..1..1
		

Crossrefs

Cf. A262472.

Formula

Empirical: a(n) = 11*a(n-1) -49*a(n-2) +179*a(n-3) -382*a(n-4) -478*a(n-5) +4682*a(n-6) -20542*a(n-7) +61367*a(n-8) -104077*a(n-9) +152183*a(n-10) -136453*a(n-11) -60984*a(n-12) +104544*a(n-13) -156816*a(n-14) +156816*a(n-15)

A262468 Number of (n+1)X(4+1) 0..1 arrays with each row divisible by 3 and each column divisible by 5, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

1, 11, 121, 457, 2413, 22907, 239281, 2028469, 19072681, 195594107, 2033050681, 20694058921, 213513561709, 2238052993835, 23529091943281, 247329143808181, 2608684587258313, 27709182321786251, 294872156127246841
Offset: 1

Views

Author

R. H. Hardin, Sep 23 2015

Keywords

Comments

Column 4 of A262472.

Examples

			Some solutions for n=4
..0..0..0..0..0....1..0..0..1..0....0..0..1..1..0....1..0..0..1..0
..0..0..0..1..1....1..0..0..1..0....0..0..1..1..0....0..0..0..0..0
..0..1..1..1..1....0..0..0..0..0....1..1..1..1..0....1..0..0..1..0
..0..0..0..1..1....0..0..0..0..0....0..0..1..1..0....0..0..0..0..0
..0..1..1..1..1....1..0..0..1..0....1..1..0..0..0....0..0..0..0..0
		

Crossrefs

Cf. A262472.

Formula

Empirical recurrence of order 73 (see link above)

A262469 Number of (n+1)X(5+1) 0..1 arrays with each row divisible by 3 and each column divisible by 5, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

1, 22, 484, 3055, 30229, 552430, 11489332, 198237391, 3805146805, 77803476910, 1612625364820, 33119154814159, 687120423331861, 14386036609956334, 302135208204396148, 6368273090580898255, 134603658832727226229
Offset: 1

Views

Author

R. H. Hardin, Sep 23 2015

Keywords

Comments

Column 5 of A262472.

Examples

			Some solutions for n=4
..0..0..0..1..1..0....1..1..0..0..1..1....1..0..1..1..0..1....0..0..0..0..0..0
..1..1..1..1..0..0....1..0..1..0..1..0....1..0..1..1..0..1....1..1..1..1..1..1
..0..1..1..1..1..0....1..1..0..0..1..1....1..0..0..1..0..0....1..1..1..0..0..1
..1..1..1..1..0..0....1..0..1..0..1..0....1..0..0..1..0..0....1..1..1..1..1..1
..0..1..1..0..0..0....0..0..0..0..0..0....0..0..1..0..0..1....1..1..1..0..0..1
		

Crossrefs

Cf. A262472.

A262470 Number of (n+1)X(6+1) 0..1 arrays with each row divisible by 3 and each column divisible by 5, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

1, 43, 1849, 16081, 234421, 8080915, 326748241, 10190636521, 367750753321, 14893989614299, 614943639587257, 25082322234133297, 1040046474998577205, 43832347852302709171, 1854080585134116272977, 78605030988741667500553
Offset: 1

Views

Author

R. H. Hardin, Sep 23 2015

Keywords

Comments

Column 6 of A262472.

Examples

			Some solutions for n=4
..0..0..1..0..1..0..1....1..1..1..1..0..0..0....1..0..1..0..1..1..1
..1..0..0..0..1..0..1....1..0..1..1..1..0..1....1..1..1..1..1..1..0
..0..0..1..0..1..0..1....0..1..1..0..0..0..0....0..0..1..0..1..0..1
..1..0..0..0..1..0..1....0..0..1..0..1..0..1....0..1..1..1..1..0..0
..0..0..0..0..0..0..0....1..0..0..1..0..0..0....1..0..0..0..0..1..0
		

Crossrefs

Cf. A262472.

A262471 Number of (n+1)X(7+1) 0..1 arrays with each row divisible by 3 and each column divisible by 5, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

1, 86, 7396, 107731, 2924245, 194647694, 15659602612, 997197229531, 73403875498285, 5949800358307070, 491379103358093140, 40436885956386358531, 3371777492321746335493, 284471978025689266803566
Offset: 1

Views

Author

R. H. Hardin, Sep 23 2015

Keywords

Comments

Column 7 of A262472.

Examples

			Some solutions for n=4
..0..1..1..0..1..0..0..1....0..1..0..0..0..0..1..0....0..0..0..0..1..1..1..1
..0..0..1..1..1..0..0..1....0..1..1..0..0..0..0..0....1..0..1..0..1..0..1..1
..1..1..1..0..0..1..0..0....1..1..0..1..1..0..1..1....1..1..0..0..1..1..1..1
..0..0..1..1..0..0..0..0....0..1..1..0..0..0..0..0....1..0..1..0..1..0..1..1
..1..0..0..0..1..1..0..1....1..0..0..1..1..0..0..1....1..1..0..0..0..0..0..0
		

Crossrefs

Cf. A262472.

A262473 Number of (3+1) X (n+1) 0..1 arrays with each row divisible by 3 and each column divisible by 5, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

4, 9, 36, 121, 484, 1849, 7396, 29241, 116964, 466489, 1865956, 7458361, 29833444, 119311929, 477247716, 1908903481, 7635613924, 30542106169, 122168424676, 488672300601, 1954689202404, 7818751217209, 31275004868836, 125099997105721
Offset: 1

Views

Author

R. H. Hardin, Sep 23 2015

Keywords

Examples

			Some solutions for n=4:
..0..1..0..0..1....1..1..1..1..0....1..1..0..1..1....0..0..0..0..0
..1..0..1..0..1....1..1..0..1..1....1..1..0..1..1....1..1..0..1..1
..0..1..0..0..1....1..1..1..1..0....1..1..0..1..1....0..0..0..0..0
..1..0..1..0..1....1..1..0..1..1....1..1..0..1..1....1..1..0..1..1
		

Crossrefs

Row 3 of A262472.

Formula

Empirical: a(n) = 4*a(n-1) + 5*a(n-2) - 20*a(n-3) - 4*a(n-4) + 16*a(n-5).
Empirical g.f.: x*(4 - 7*x - 20*x^2 + 12*x^3 + 16*x^4) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)*(1 - 4*x)). - Colin Barker, Dec 31 2018

A262474 Number of (4+1)X(n+1) 0..1 arrays with each row divisible by 3 and each column divisible by 5, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

7, 17, 115, 457, 3055, 16081, 107731, 655001, 4427407, 28848817, 196901395, 1326556777, 9126593455, 62528586641, 432702173011, 2991144099001, 20781922758607, 144379920476017, 1005798678435475, 7008103279484297
Offset: 1

Views

Author

R. H. Hardin, Sep 23 2015

Keywords

Comments

Row 4 of A262472.

Examples

			Some solutions for n=4
..0..1..0..0..1....0..0..0..0..0....1..1..0..0..0....0..1..1..0..0
..1..1..1..1..0....0..0..0..0..0....1..0..1..0..1....0..1..1..1..1
..0..1..1..1..1....0..0..0..1..1....1..1..0..0..0....0..1..1..1..1
..1..1..1..1..0....0..0..0..0..0....1..0..1..0..1....0..1..1..1..1
..0..0..1..1..0....0..0..0..1..1....0..0..0..0..0....0..0..0..1..1
		

Crossrefs

Cf. A262472.

Formula

Empirical: a(n) = 7*a(n-1) +75*a(n-2) -525*a(n-3) -2034*a(n-4) +14238*a(n-5) +25010*a(n-6) -175070*a(n-7) -141969*a(n-8) +993783*a(n-9) +333315*a(n-10) -2333205*a(n-11) -214396*a(n-12) +1500772*a(n-13)

A262475 Number of (5+1)X(n+1) 0..1 arrays with each row divisible by 3 and each column divisible by 5, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

13, 37, 469, 2413, 30229, 234421, 2924245, 29005981, 362253013, 4077093157, 51105791029, 611509849933, 7700348530069, 94992216728341, 1201803227962645, 15070500857186941, 191509623622912213, 2424933117697177477
Offset: 1

Views

Author

R. H. Hardin, Sep 23 2015

Keywords

Comments

Row 5 of A262472.

Examples

			Some solutions for n=4
..0..0..0..0..0....1..0..0..1..0....1..1..0..1..1....0..1..1..1..1
..0..0..0..0..0....0..0..1..1..0....1..1..0..1..1....0..0..0..0..0
..1..0..1..0..1....0..1..1..0..0....0..0..0..0..0....0..1..0..0..1
..1..0..0..1..0....0..0..1..1..0....0..1..0..0..1....0..1..0..0..1
..1..0..1..0..1....1..1..1..1..0....1..1..0..1..1....0..0..1..1..0
..1..0..0..1..0....1..0..0..1..0....0..1..0..0..1....0..1..1..1..1
		

Crossrefs

Cf. A262472.

Formula

Empirical: a(n) = 13*a(n-1) +598*a(n-2) -7774*a(n-3) -159204*a(n-4) +2069652*a(n-5) +25102262*a(n-6) -326329406*a(n-7) -2625721997*a(n-8) +34134385961*a(n-9) +193137936456*a(n-10) -2510793173928*a(n-11) -10320305833888*a(n-12) +134163975840544*a(n-13) +407697970217164*a(n-14) -5300073612823132*a(n-15) -11991972387294603*a(n-16) +155895641034829839*a(n-17) +262231592584367494*a(n-18) -3409010703596777422*a(n-19) -4220509269410999212*a(n-20) +54866620502342989756*a(n-21) +49009303645963174686*a(n-22) -637120947397521270918*a(n-23) -397172035135043236199*a(n-24) +5163236456755562070587*a(n-25) +2128419673029471315452*a(n-26) -27669455749383127100876*a(n-27) -6888351482794359567696*a(n-28) +89548569276326674380048*a(n-29) +11351034044825782285888*a(n-30) -147563442582735169716544*a(n-31) -6238969631490801587200*a(n-32) +81106605209380420633600*a(n-33)

A262476 Number of (6+1)X(n+1) 0..1 arrays with each row divisible by 3 and each column divisible by 5, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

26, 107, 2622, 22907, 552430, 8080915, 194647694, 3858564731, 94346094606, 2163710210627, 53883371144782, 1317783399760987, 33307976756396270, 838678794069752435, 21419258810892736014, 547077243280259311931
Offset: 1

Views

Author

R. H. Hardin, Sep 23 2015

Keywords

Comments

Row 6 of A262472.

Examples

			Some solutions for n=4
..0..0..0..0..0....0..0..1..1..0....1..1..0..1..1....0..0..0..0..0
..0..1..1..1..1....1..1..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..1..1..0....1..1..0..0..0....1..0..0..1..0....0..1..1..0..0
..0..1..0..0..1....0..0..1..1..0....0..0..0..0..0....1..0..1..0..1
..1..0..0..1..0....0..0..0..0..0....1..1..0..1..1....0..1..1..1..1
..0..0..1..1..0....1..1..1..1..0....0..1..0..0..1....1..0..1..0..1
..1..0..0..1..0....0..0..1..1..0....1..0..0..1..0....0..0..0..1..1
		

Crossrefs

Cf. A262472.

Formula

Empirical recurrence of order 67 (see link above)
Showing 1-10 of 12 results. Next