cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262490 The index of the first of two consecutive positive triangular numbers (A000217) the sum of which is equal to the sum of four consecutive positive triangular numbers.

This page as a plain text file.
%I A262490 #8 Mar 05 2016 11:13:50
%S A262490 9,57,337,1969,11481,66921,390049,2273377,13250217,77227929,450117361,
%T A262490 2623476241,15290740089,89120964297,519435045697,3027489309889,
%U A262490 17645500813641,102845515571961,599427592618129,3493720040136817,20362892648202777,118683635849079849
%N A262490 The index of the first of two consecutive positive triangular numbers (A000217) the sum of which is equal to the sum of four consecutive positive triangular numbers.
%C A262490 For the index of the first of the corresponding four consecutive triangular numbers, see A202391.
%H A262490 Colin Barker, <a href="/A262490/b262490.txt">Table of n, a(n) for n = 1..1000</a>
%H A262490 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-7,1).
%F A262490 a(n) = 7*a(n-1)-7*a(n-2)+a(n-3) for n>3.
%F A262490 G.f.: -x*(x-3)^2 / ((x-1)*(x^2-6*x+1)).
%F A262490 a(n) = -1+(1-1/sqrt(2))*(3-2*sqrt(2))^n+(1+1/sqrt(2))*(3+2*sqrt(2))^n. - _Colin Barker_, Mar 05 2016
%e A262490 9 is in the sequence because T(9)+T(10) = 45+55 = 100 = 15+21+28+36 = T(5)+T(6)+T(7)+T(8), where T(k) is the k-th triangular number.
%o A262490 (PARI) Vec(-x*(x-3)^2/((x-1)*(x^2-6*x+1)) + O(x^30))
%Y A262490 Cf. A000217, A202391, A262489, A262491, A262492.
%K A262490 nonn,easy
%O A262490 1,1
%A A262490 _Colin Barker_, Sep 24 2015