cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262491 The index of the first of two consecutive positive triangular numbers (A000217) the sum of which is equal to the sum of eleven consecutive positive triangular numbers.

This page as a plain text file.
%I A262491 #8 May 17 2020 11:16:47
%S A262491 43,120,549,3783,17214,47629,216688,1490884,6782665,18766098,85374915,
%T A262491 587404905,2672353188,7393795375,33637500214,231436042078,
%U A262491 1052900373799,2913136612044,13253089709793,91185213174219,414840074924010,1147768431350353,5221683708158620
%N A262491 The index of the first of two consecutive positive triangular numbers (A000217) the sum of which is equal to the sum of eleven consecutive positive triangular numbers.
%C A262491 For the index of the first of the corresponding eleven consecutive triangular numbers, see A116476.
%H A262491 Colin Barker, <a href="/A262491/b262491.txt">Table of n, a(n) for n = 1..1000</a>
%H A262491 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,394,-394,0,0,-1,1).
%F A262491 G.f.: -x*(10*x^8+33*x^6+77*x^5-3511*x^4+3234*x^3+429*x^2+77*x+43) / ((x-1)*(x^8-394*x^4+1)).
%e A262491 43 is in the sequence because T(43)+T(44) = 946+990 = 1936 = 91+...+276 = T(13)+...+T(23), where T(k) is the k-th triangular number.
%t A262491 LinearRecurrence[{1,0,0,394,-394,0,0,-1,1},{43,120,549,3783,17214,47629,216688,1490884,6782665},30] (* _Harvey P. Dale_, May 17 2020 *)
%o A262491 (PARI) Vec(-x*(10*x^8+33*x^6+77*x^5-3511*x^4+3234*x^3+429*x^2+77*x+43)/((x-1)*(x^8-394*x^4+1)) + O(x^30))
%Y A262491 Cf. A000217, A116476, A262489, A262490, A262492.
%K A262491 nonn,easy
%O A262491 1,1
%A A262491 _Colin Barker_, Sep 24 2015