A262492 The index of the first of two consecutive positive triangular numbers (A000217) the sum of which is equal to the sum of thirteen consecutive positive triangular numbers.
25, 90, 207, 1117, 2560, 9255, 21202, 114022, 261195, 944020, 2162497, 11629227, 26639430, 96280885, 220553592, 1186067232, 2716960765, 9819706350, 22494303987, 120967228537, 277103358700, 1001513766915, 2294198453182, 12337471243642, 28261825626735
Offset: 1
Examples
25 is in the sequence because T(25)+T(26) = 325+351 = 676 = 6+...+120 = T(3)+...+T(15), where T(k) is the k-th triangular number.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,102,-102,0,0,-1,1).
Programs
-
PARI
Vec(-x*(12*x^8+13*x^6+65*x^5-1107*x^4+910*x^3+117*x^2+65*x+25)/((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)) + O(x^30))
Formula
G.f.: -x*(12*x^8+13*x^6+65*x^5-1107*x^4+910*x^3+117*x^2+65*x+25) / ((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)).
Comments