This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262503 #22 Oct 02 2015 12:10:16 %S A262503 0,2,6,12,18,22,30,34,42,48,60,72,84,96,108,120,132,140,112,116,126, %T A262503 124,130,138,150,156,168,180,176,184,192,204,216,228,240,248,264,280, %U A262503 250,258,270,288,296,312,306,320,328,340,352,364,372,354,358,368,384,396,420,402,414,418,432,450,468,480,504,520,540,560,572,580,594,612,610,618,622,628,648,672,592 %N A262503 a(n) = largest k such that A155043(k) = n. %C A262503 The first odd terms occur as a(121) = 1089, a(123) = 1093, a(349) = 3253, a(717) = 7581, a(807) = 8685, a(1225) = 13689, etc. %H A262503 Antti Karttunen, <a href="/A262503/b262503.txt">Table of n, a(n) for n = 0..110880</a> %H A262503 A. Karttunen, <a href="https://oeis.org/plot2a?name1=A262502&name2=A262503&tform1=untransformed&tform2=untransformed&shift=-2&radiop1=ratio&drawlines=true">Ratio A262502(n+2)/a(n) drawn with the help of OEIS Plot2-script</a> %H A262503 A. Karttunen, <a href="https://oeis.org/plot2a?name1=A262503&name2=A261089&tform1=untransformed&tform2=untransformed&shift=0&radiop1=ratio&drawlines=true">Ratio a(n)/A261089(n) drawn with the help of OEIS Plot2-script</a> %F A262503 Other identities and observations. For all n >= 0: %F A262503 A262502(n+2) > a(n). [Not rigorously proved, but empirical evidence and common sense agrees.] %t A262503 lim = 80; a[0] = 0; a[n_] := a[n] = 1 + a[n - DivisorSigma[0, n]]; t = Table[a@ n, {n, 0, 12 lim}]; Last@ Flatten@ Position[t, #] - 1 & /@ Range[0, lim] (* Uses the product of a limit and an arbitrary coefficient (12) based on observation of output for low values (n < 500). This might need to be adjusted for large n to give correct values of a(n). - _Michael De Vlieger_, Sep 29 2015 *) (* Note: one really should use a general safe limit, like A262502(n+2) I use in my Scheme-program. - _Antti Karttunen_, Sep 29 2015 *) %o A262503 (PARI) %o A262503 allocatemem(123456789); %o A262503 uplim = 2162160; \\ = A002182(41). %o A262503 v155043 = vector(uplim); %o A262503 v155043[1] = 1; v155043[2] = 1; %o A262503 for(i=3, uplim, v155043[i] = 1 + v155043[i-numdiv(i)]); %o A262503 A155043 = n -> if(!n,n,v155043[n]); %o A262503 uplim2 = 110880; \\ = A002182(30). %o A262503 v262503 = vector(uplim2); %o A262503 for(i=1, uplim, if(v155043[i] <= uplim2, v262503[v155043[i]] = i)); %o A262503 A262503 = n -> if(!n,n,v262503[n]); %o A262503 for(n=0, uplim2, write("b262503.txt", n, " ", A262503(n))); %o A262503 (Scheme) %o A262503 (define (A262503 n) (let loop ((k (A262502 (+ 2 n)))) (if (= (A155043 k) n) k (loop (- k 1))))) %Y A262503 Cf. A261089 (gives the first occurrence of n in A155043). %Y A262503 Cf. A262507 (gives the number of times n occurs in A155043). %Y A262503 Cf. A259934, A262502. %K A262503 nonn %O A262503 0,2 %A A262503 _Antti Karttunen_, Sep 24 2015