This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262507 #16 Nov 27 2015 00:17:26 %S A262507 1,2,3,5,4,5,6,4,4,4,8,4,4,5,8,7,7,7,7,8,5,6,6,8,10,7,8,7,7,5,5,6,6,8, %T A262507 6,7,7,7,4,5,5,6,6,8,7,5,5,6,7,11,5,4,5,8,12,7,9,5,8,8,9,10,14,11,12, %U A262507 11,9,11,13,12,12,11,11,11,12,12,10,9,9,9,8,6,10,9,10,8,7,7,8,11,10,10,12,9,7,6,5,5,5,5,4,7,8,6,7,9,7,5,11,13,13,8,10,12,13,10,12,16,9,8,12 %N A262507 a(n) = number of times n occurs in A155043. %C A262507 Records are: 1, 2, 3, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 26, 27, 31, 35, 39, 44, ... and they occur at positions: 0, 1, 2, 3, 6, 10, 24, 49, 54, 62, 117, 236, 445, 484, 892, 893, 1022, 1784, 1911, 1912, 1913, 20600, 50822, ... %C A262507 a(n) gives the length of each row of irregular table A263265. %H A262507 Antti Karttunen, <a href="/A262507/b262507.txt">Table of n, a(n) for n = 0..110880</a> %F A262507 a(n) = Sum_{k=n..A262502(2+n)} [A155043(k) == n]. (Here [...] denotes the Iverson bracket, resulting 1 when A155043(k) is n and 0 otherwise.) %F A262507 Other identities. For all n >= 0: %F A262507 a(n) = A263279(n) + A263280(n). %o A262507 (PARI) %o A262507 allocatemem(123456789); %o A262507 uplim = 2162160; \\ = A002182(41). %o A262507 v155043 = vector(uplim); %o A262507 v155043[1] = 1; v155043[2] = 1; %o A262507 for(i=3, uplim, v155043[i] = 1 + v155043[i-numdiv(i)]); %o A262507 uplim2 = 110880; \\ = A002182(30). %o A262507 v262507 = vector(uplim2); %o A262507 for(i=1, uplim, if(v155043[i] <= uplim2, v262507[v155043[i]]++)); %o A262507 A262507 = n -> if(!n,1,v262507[n]); %o A262507 for(n=0, uplim2, write("b262507.txt", n, " ", A262507(n))); %o A262507 (Scheme) %o A262507 (define (A262507 n) (add (lambda (k) (if (= (A155043 k) n) 1 0)) n (A262502 (+ 2 n)))) %o A262507 ;; Auxiliary function add implements sum_{i=lowlim..uplim} intfun(i) %o A262507 (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i))))))) %Y A262507 Cf. A000005, A060990, A155043, A262502, A262505, A263265, A263270, A263279, A263280. %Y A262507 Cf. A261089, A262503. %Y A262507 Cf. A262508 (positions of ones). %Y A262507 Cf. A263260 (partial sums). %K A262507 nonn %O A262507 0,2 %A A262507 _Antti Karttunen_, Sep 25 2015