This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262586 #36 Aug 08 2025 01:54:34 %S A262586 1,1,1,1,2,1,4,5,6,5,6,16,21,26,24,19,48,88,119,147,133,49,164,330, %T A262586 538,735,892,846,150,559,1302,2310,3568,4830,5876,5661,442,1952,5005, %U A262586 9882,16500,24596,33253,40490,39556,1424,6872,19504,41715,75387,120582,176354,237336,290020,286000,4522 %N A262586 Square array T(n,m) (n>=0, m>=0) read by antidiagonals downwards giving number of rooted triangulations of type [n,m] up to orientation-preserving isomorphisms. %H A262586 Andrew Howroyd, <a href="/A262586/b262586.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals). %H A262586 Jean-François Alcover, <a href="/A262586/a262586.txt">Mathematica code</a> %H A262586 W. G. Brown, <a href="/A002709/a002709.pdf">Enumeration of Triangulations of the Disk</a>, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]. See Table 1 (with a typo at G(n=1,m=6)). %H A262586 L. March and C. F. Earl, <a href="https://doi.org/10.1068/b040057">On Counting Architectural Plans</a>, Environment and Planning B, 4 (1977), 57-80. See Table 2. %F A262586 Brown (Eq. 6.3) gives a formula. %e A262586 Array begins: %e A262586 ============================================================== %e A262586 n\k | 0 1 2 3 4 5 6 ... %e A262586 ----+--------------------------------------------------------- %e A262586 0 | 1 1 1 4 6 19 49 ... %e A262586 1 | 1 2 5 16 48 164 559 ... %e A262586 2 | 1 6 21 88 330 1302 5005 ... %e A262586 3 | 5 26 119 538 2310 9882 41715 ... %e A262586 4 | 24 147 735 3568 16500 75387 338685 ... %e A262586 5 | 133 892 4830 24596 120582 578622 2730728 ... %e A262586 6 | 846 5876 33253 176354 900240 4493168 22037055 ... %e A262586 7 | 5661 40490 237336 1298732 6849810 35286534 178606610 ... %e A262586 ... %e A262586 The first few antidiagonals are: %e A262586 1, %e A262586 1,1, %e A262586 1,2,1, %e A262586 4,5,6,5, %e A262586 6,16,21,26,24, %e A262586 19,48,88,119,147,133, %e A262586 49,164,330,538,735,892,846, %e A262586 ... %p A262586 A262586 := proc(n,m) %p A262586 BrownG(n,m) ; # procedure in A210696 %p A262586 end proc: %p A262586 for d from 0 to 12 do %p A262586 for n from 0 to d do %p A262586 printf("%d,",A262586(n,d-n)) ; %p A262586 end do: %p A262586 end do: # _R. J. Mathar_, Oct 21 2015 %t A262586 (* See LINKS section. *) %o A262586 (PARI) \\ See Links in A169808 for PARI program file. %o A262586 { for(n=0, 7, for(k=0, 7, print1(OrientedTriangs(n,k), ", ")); print) } \\ _Andrew Howroyd_, Nov 23 2024 %Y A262586 Columns 0..2 are A002709, A002710, A002711. %Y A262586 Rows 0..3 are A001683, A210696, A005498, A005499. %Y A262586 Antidiagonal sums are A341855. %Y A262586 Cf. A169808 (unoriented), A169809 (achiral). %K A262586 nonn,tabl %O A262586 0,5 %A A262586 _N. J. A. Sloane_, Oct 20 2015