This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262598 #21 Oct 28 2021 06:27:40 %S A262598 1,2,1,3,1,6,9,15,2,5,6,16,2,6,9,21,2,10,25,45,2,57,495,609,2,637, %T A262598 21463,22737,3,10,25,55,3,14,49,91,4,14,49,105,4,18,81,153,5,13,40, %U A262598 105,5,18,81,171,5,22,121,231,5,574,27881,30751,6,22,121,253,6,26,169,325 %N A262598 Small positive integer solutions of the simultaneous equations y = ax + b and y^2 = ax^3 + b. %C A262598 The b-file contains all solutions for 1<=a<=100 and 1<=x<=2000000, double-checked by APL and Maple programs. %C A262598 Of the 224 solutions: %C A262598 100 are of the form (a, 2(2a-1), (2a-1)^2, (4a-1)(2a-1)); %C A262598 100 are of the form (a, 2(2a+1), (2a+1)^2, (4a+1)(2a+1)); %C A262598 6 are of the form (F(k), F(k+2), F(k)*F(k+1), F(k)*F(k+3)), %C A262598 where F(n) is the n-th Fibonacci number and k is odd; %C A262598 (1, 2, 1, 3) is of both forms (a, 2(2a-1), (2a-1)^2, (4a-1)(2a-1)) and (F(k), F(k+2), F(k)*F(k+1), F(k)*F(k+3)); %C A262598 19 have the form (a, cs, c^2t, cu) but appear to be otherwise unrelated. %H A262598 Christopher Hunt Gribble, <a href="/A262598/b262598.txt">Table of n, a(n) for n = 1..896</a> %e A262598 The sequence is the result of concatenating the rows in the table of solutions for a, x, b and y. The table starts: %e A262598 . a x b y %e A262598 . 1 2 1 3 %e A262598 . 1 6 9 15 %e A262598 . 2 5 6 16 %e A262598 . 2 6 9 21 %e A262598 . 2 10 25 45 %e A262598 . 2 57 495 609 %e A262598 . 2 637 21463 22737 %e A262598 . 3 10 25 55 %e A262598 . 3 14 49 91 %e A262598 . 4 14 49 105 %e A262598 . 4 18 81 153 %e A262598 . 5 13 40 105 %e A262598 . 5 18 81 171 %e A262598 . 5 22 121 231 %e A262598 . 5 574 27881 30751 %e A262598 . 6 22 121 253 %e A262598 . 6 26 169 325 %e A262598 For a=7 the three solution quadruplets are (7,26,169,351), (7,30,225,435) and (7,1340,120400,129780). %p A262598 for a to 100 do %p A262598 for x to 2000000 do %p A262598 y := ceil(sqrt(a*x^3)); %p A262598 b := y^2-a*x^3; %p A262598 if b > 0 and y = a*x+b then %p A262598 printf("%10d %10d %10d %10d\n", a, x, b, y); %p A262598 end if; %p A262598 end do; %p A262598 end do; %K A262598 nonn,tabf %O A262598 1,2 %A A262598 _Adam Kertesz_ and _Christopher Hunt Gribble_, Sep 25 2015