cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262608 Primes p such that floor(10*p/Pi) mod 10 = 0.

Original entry on oeis.org

19, 41, 107, 151, 173, 239, 283, 349, 421, 443, 487, 509, 619, 641, 751, 773, 839, 883, 971, 1087, 1103, 1109, 1153, 1307, 1373, 1439, 1483, 1549, 1571, 1637, 1747, 1907, 1951, 1973, 2017, 2039, 2083, 2237, 2281, 2347, 2551, 2617, 2683, 2749, 2837, 2903, 2969
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 26 2015

Keywords

Comments

a(n) = A141855(n) for 1 <= n <= 8;
a(n) = A141850(n-1) for 9 <= n <= 19;
a(n) = A141856(n-4) for 22 <= n <= 31;
a(n) = A141851(n-5) for 32 <= n <= 40;
a(n) = A141857(n-3) for 41 <= n <= 49.

Examples

			19 is a term because floor(19*10/Pi) = 60 and 60 mod 10 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 432, Mod[Floor[10 #/Pi], 10] == 0 &] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    forprime(p=2, 1e4, if (10*(p\Pi) == 10*p\Pi , print1(p", "))) \\ Altug Alkan, Sep 26 2015

Extensions

More terms and better definition from Altug Alkan, Sep 26 2015