cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262612 Triangle read by rows T(n,k) in which column k lists the partial sums of the k-th column of triangle A236104.

This page as a plain text file.
%I A262612 #22 Nov 16 2024 06:30:53
%S A262612 1,5,14,1,30,2,55,6,91,10,1,140,19,2,204,28,3,285,44,7,385,60,11,1,
%T A262612 506,85,15,2,650,110,24,3,819,146,33,4,1015,182,42,8,1240,231,58,12,1,
%U A262612 1496,280,74,16,2,1785,344,90,20,3,2109,408,115,29,4,2470,489,140,38,5,2870,570,165,47,9,3311,670,201,56,13,1
%N A262612 Triangle read by rows T(n,k) in which column k lists the partial sums of the k-th column of triangle A236104.
%C A262612 Alternating sum of row n equals A175254(n), i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A175254(n), which is also the volume (or the total number of units cubes) in the first n levels of the stepped pyramid described in A245092.
%C A262612 Row n has length A003056(n) hence the first element of column k is in row A000217(k).
%e A262612 Triangle begins:
%e A262612      1;
%e A262612      5;
%e A262612     14,    1;
%e A262612     30,    2;
%e A262612     55,    6;
%e A262612     91,   10,    1;
%e A262612    140,   19,    2;
%e A262612    204,   28,    3;
%e A262612    285,   44,    7;
%e A262612    385,   60,   11,    1;
%e A262612    506,   85,   15,    2;
%e A262612    650,  110,   24,    3;
%e A262612    819,  146,   33,    4;
%e A262612   1015,  182,   42,    8;
%e A262612   1240,  231,   58,   12,    1;
%e A262612   1496,  280,   74,   16,    2;
%e A262612   1785,  344,   90,   20,    3;
%e A262612   2109,  408,  115,   29,    4;
%e A262612   2470,  489,  140,   38,    5;
%e A262612   2870,  570,  165,   47,    9;
%e A262612   3311,  670,  201,   56,   13,    1;
%e A262612   3795,  770,  237,   72,   17,    2;
%e A262612   4324,  891,  273,   88,   21,    3;
%e A262612   4900, 1012,  322,  104,   25,    4;
%e A262612   ...
%e A262612 For n = 6 we have that A175254(6) = [1] + [1 + 3] + [1 + 3 + 4] + [1 + 3 + 4 + 7] + [1 + 3 + 4 + 7 + 6] + [1 + 3 + 4 + 7 + 6 + 12] = 1 + 4 + 8 + 15 + 21 + 33 = 82. On the other hand the alternating sum of the 6th row of the triangle is 91 - 10 + 1 = 82, equaling A175254(6).
%Y A262612 Cf. A000203, A000217, A003056, A024916, A175254, A196020, A235791, A236104, A237048, A237591, A237593, A237270, A237271, A245092, A261699, A262626.
%Y A262612 Column 1 gives A000330, n >= 1. Column 2 is A005993. It appears that column 3 is A092353.
%K A262612 nonn,tabf
%O A262612 1,2
%A A262612 _Omar E. Pol_, Nov 03 2015