This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262612 #22 Nov 16 2024 06:30:53 %S A262612 1,5,14,1,30,2,55,6,91,10,1,140,19,2,204,28,3,285,44,7,385,60,11,1, %T A262612 506,85,15,2,650,110,24,3,819,146,33,4,1015,182,42,8,1240,231,58,12,1, %U A262612 1496,280,74,16,2,1785,344,90,20,3,2109,408,115,29,4,2470,489,140,38,5,2870,570,165,47,9,3311,670,201,56,13,1 %N A262612 Triangle read by rows T(n,k) in which column k lists the partial sums of the k-th column of triangle A236104. %C A262612 Alternating sum of row n equals A175254(n), i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A175254(n), which is also the volume (or the total number of units cubes) in the first n levels of the stepped pyramid described in A245092. %C A262612 Row n has length A003056(n) hence the first element of column k is in row A000217(k). %e A262612 Triangle begins: %e A262612 1; %e A262612 5; %e A262612 14, 1; %e A262612 30, 2; %e A262612 55, 6; %e A262612 91, 10, 1; %e A262612 140, 19, 2; %e A262612 204, 28, 3; %e A262612 285, 44, 7; %e A262612 385, 60, 11, 1; %e A262612 506, 85, 15, 2; %e A262612 650, 110, 24, 3; %e A262612 819, 146, 33, 4; %e A262612 1015, 182, 42, 8; %e A262612 1240, 231, 58, 12, 1; %e A262612 1496, 280, 74, 16, 2; %e A262612 1785, 344, 90, 20, 3; %e A262612 2109, 408, 115, 29, 4; %e A262612 2470, 489, 140, 38, 5; %e A262612 2870, 570, 165, 47, 9; %e A262612 3311, 670, 201, 56, 13, 1; %e A262612 3795, 770, 237, 72, 17, 2; %e A262612 4324, 891, 273, 88, 21, 3; %e A262612 4900, 1012, 322, 104, 25, 4; %e A262612 ... %e A262612 For n = 6 we have that A175254(6) = [1] + [1 + 3] + [1 + 3 + 4] + [1 + 3 + 4 + 7] + [1 + 3 + 4 + 7 + 6] + [1 + 3 + 4 + 7 + 6 + 12] = 1 + 4 + 8 + 15 + 21 + 33 = 82. On the other hand the alternating sum of the 6th row of the triangle is 91 - 10 + 1 = 82, equaling A175254(6). %Y A262612 Cf. A000203, A000217, A003056, A024916, A175254, A196020, A235791, A236104, A237048, A237591, A237593, A237270, A237271, A245092, A261699, A262626. %Y A262612 Column 1 gives A000330, n >= 1. Column 2 is A005993. It appears that column 3 is A092353. %K A262612 nonn,tabf %O A262612 1,2 %A A262612 _Omar E. Pol_, Nov 03 2015