A262616 Triangle read by rows: T(n,k) = 4^(n-k), n>=0, 0<=k<=n.
1, 4, 1, 16, 4, 1, 64, 16, 4, 1, 256, 64, 16, 4, 1, 1024, 256, 64, 16, 4, 1, 4096, 1024, 256, 64, 16, 4, 1, 16384, 4096, 1024, 256, 64, 16, 4, 1, 65536, 16384, 4096, 1024, 256, 64, 16, 4, 1, 262144, 65536, 16384, 4096, 1024, 256, 64, 16, 4, 1, 1048576, 262144, 65536, 16384, 4096, 1024, 256, 64, 16, 4, 1
Offset: 0
Examples
Triangle begins: 1; 4, 1; 16, 4, 1; 64, 16, 4, 1; 256, 64, 16, 4, 1; 1024, 256, 64, 16, 4, 1; 4096, 1024, 256, 64, 16, 4, 1; 16384, 4096, 1024, 256, 64, 16, 4, 1; 65536, 16384, 4096, 1024, 256, 64, 16, 4, 1; 262144, 65536, 16384, 4096, 1024, 256, 64, 16, 4, 1; 1048576, 262144, 65536, 16384, 4096, 1024, 256, 64, 16, 4, 1; 4194304, 1048576, 262144, 65536, 16384, 4096, 1024, 256, 64, 16, 4, 1; ...
Links
- Indranil Ghosh, Rows 0..100, flattened
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Crossrefs
Programs
-
Mathematica
Table[4^(n - k), {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 17 2016 *)
Formula
T(n,k) = A000302(n-k).
Comments