cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262620 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton on the square grid (see Comments lines for definition).

This page as a plain text file.
%I A262620 #28 Apr 02 2017 17:16:39
%S A262620 1,5,17,21,49,69,81,85,145,197,241,277,305,325,337,341,465,581,689,
%T A262620 789,881,965,1041,1109,1169,1221,1265,1301,1329,1349,1361,1365,1617,
%U A262620 1861,2097,2325,2545,2757,2961,3157,3345,3525,3697,3861,4017,4165,4305,4437,4561,4677,4785,4885,4977,5061,5137,5205,5265,5317,5361,5397
%N A262620 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton on the square grid (see Comments lines for definition).
%C A262620 On the infinite square grid consider four 90-degree wedges forming a "X" with the vertex located at the center of a cell.
%C A262620 At stage 0 we start with an ON cell in the vertex of the wedges, so a(0) = 1.
%C A262620 In order to construct the structure we use the following rules for the South wedge:
%C A262620 - The cells turned ON remain ON forever.
%C A262620 - At stage 1 we turn ON the nearest cell to the initial ON cell.
%C A262620 - If n is a power of 2, at stage n we turn "ON" 2*n - 1 connected cells in the n-th row of the wedge.
%C A262620 - Otherwise, if n is not a power of 2, at stage n we turn "ON" k - 2 connected cells in the n-th row of the wedge, where k is the number of ON cells in row n - 1.
%C A262620 - The "ON" cells of row n must be centered respect to the "ON" cells of row n - 1.
%C A262620 The structures in the other three wedges are copies of the structure in the South wedge but they grow in direction East, North and West.
%C A262620 Note that in every wedge the structure seems to grow into the holes of a virtual structure similar to the SierpiƄski's triangle but using square cells.
%C A262620 A262621 gives the number of cells turned "ON" at n-th stage.
%C A262620 This is analog of A256266, but here we are working on the square grid and we have four wedges, not six wedges.
%H A262620 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%H A262620 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F A262620 a(n) = 1 + 4*A261692(n).
%e A262620 Illustration of the structure after 15 generations:
%e A262620 .
%e A262620 .                                   O
%e A262620 .                                 O O O
%e A262620 .                               O O O O O
%e A262620 .                             O O O O O O O
%e A262620 .                           O O O O O O O O O
%e A262620 .                         O O O O O O O O O O O
%e A262620 .                       O O O O O O O O O O O O O
%e A262620 .                     O O O O O O O O O O O O O O O
%e A262620 .                   O               O               O
%e A262620 .                 O O             O O O             O O
%e A262620 .               O O O           O O O O O           O O O
%e A262620 .             O O O O         O O O O O O O         O O O O
%e A262620 .           O O O O O       O       O       O       O O O O O
%e A262620 .         O O O O O O     O O     O O O     O O     O O O O O O
%e A262620 .       O O O O O O O   O O O   O   O   O   O O O   O O O O O O O
%e A262620 .     O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
%e A262620 .       O O O O O O O   O O O   O   O   O   O O O   O O O O O O O
%e A262620 .         O O O O O O     O O     O O O     O O     O O O O O O
%e A262620 .           O O O O O       O       O       O       O O O O O
%e A262620 .             O O O O         O O O O O O O         O O O O
%e A262620 .               O O O           O O O O O           O O O
%e A262620 .                 O O             O O O             O O
%e A262620 .                   O               O               O
%e A262620 .                     O O O O O O O O O O O O O O O
%e A262620 .                       O O O O O O O O O O O O O
%e A262620 .                         O O O O O O O O O O O
%e A262620 .                           O O O O O O O O O
%e A262620 .                             O O O O O O O
%e A262620 .                               O O O O O
%e A262620 .                                 O O O
%e A262620 .                                   O
%e A262620 .
%e A262620 There are 341 ON cells in the structure, so a(15) = 341.
%e A262620 Note that every circle in the structure should be replaced with a square cell.
%Y A262620 Cf. A147562, A160720, A256266, A261692, A261693, A262621.
%K A262620 nonn,look
%O A262620 0,2
%A A262620 _Omar E. Pol_, Oct 16 2015